CO2 als Kohlenstoffquelle
mit künstlicher Fotosynthese gegen den Klimawandel

Worin lagen die größten Schwierigkeiten, den synthetischen Stoffwechselweg zu entwickeln?

Die größte Schwierigkeit lag nicht darin, den Stoffwechselweg am Reißbrett zu erfinden – das hat nur ein bis zwei Wochen gedauert. Dann haben wir allerdings mehr als zwei Jahre damit verbracht, den theoretisch entworfenen Zyklus experimentell umzusetzen. Wir mussten alle biologischen Einzelteile des Zyklus, die Enzyme, erst einmal finden und zusammenbringen. Dazu mussten wir unter mehr als 50 Millionen bekannten Genen und 40.000 Enzymen eine Handvoll potenzieller Kandidaten identifizieren und diese jeweils einzeln und im Zusammenspiel mit den anderen Komponenten testen.

Gab es einen Punkt, an dem Sie erst mal nicht weiterkamen?

Für lange Zeit konnten wir den Zyklus überhaupt nicht in Schwung bringen. Das Problem war, dass ein Enzym zunächst nur mit einem chemischen Hilfsmittel, genauer gesagt einer eisenhaltigen Verbindung, funktionierte, die andere Enzyme ausflocken ließ, also aus der Lösung entfernte. Wir mussten dieses Enzym erst umbauen, damit als Hilfsmittel Sauerstoff verwenden konnten, der sich mit den anderen Partnern verträgt.

Mussten Sie auf dem Weg noch mit weiteren Schwierigkeiten fertig werden?

Eine zweite, große Schwierigkeit lag darin, dass der Zyklus zu Beginn nur langsam arbeitete und sehr schnell ins Stocken kam. Dies lag daran, dass es zu vielen Fehlreaktionen kam. Wir fanden schließlich zu einer – auf den ersten Blick – ungewöhnlichen Lösung: Wir fügten einfach noch mehr Enzyme zu dem Zyklus hinzu. Die Aufgabe dieser zusätzlichen Enzyme besteht nur darin, die Fehlreaktionen innerhalb des Zyklus zu korrigieren. Bislang haben wir Biologen diesen Korrekturschleifen des Stoffwechsels offenbar zu wenig Beachtung geschenkt, aber sie scheinen auch im natürlichen Metabolismus sehr wichtig zu sein.

Der synthetische Ansatz ist in der Biologie noch relativ neu. Wie unterscheidet sich diese Herangehensweise von der in anderen biologischen Disziplinen?

Die synthetische Arbeitsweise ist für uns als Biologen immer noch ungewöhnlich. Wir sind es gewohnt, biologische Systeme auseinanderzunehmen und zu analysieren. Nicht jedoch, sie von Grunde auf neu aufzubauen. Dabei mussten wir uns langsam und in mehreren Runden vortasten, weil wir bislang kaum Regeln für das Design synthetischer Systeme kennen. Wir müssen zum Beispiel erst einmal herausfinden, welche Enzyme zusammenpassen zusammen und auf was wir beim Zusammenbau eines komplexen biologischen Systems achten müssen. Es kann etwa sein, dass die Natur zelluläre Prozesse in den Mitochondrien, den Ribosomen und anderen Organellen voneinander trennt, weil sie in unterschiedlichen Milieus stattfinden müssen und sich nicht miteinander vertragen. Wann genau man am besten biochemische Reaktionen voneinander trennt, müssen wir erst noch herausfinden.

Der synthetischen Biologie wird oft vorgeworfen, sie wolle künstliches Leben erschaffen. Zeigt Ihre Arbeit auch, dass es darum meistens nicht geht?

Wir wollen nicht Gott spielen. Eine künstliche, lebende Zelle zu schaffen liegt meiner Meinung nach in weiter Ferne. Realistischer ist es, dass wir zunächst einzelne Lebensprozesse umprogrammieren, wie wir es gerade im MaxSynBio Netzwerk der Max-Planck-Gesellschaft versuchen. Toll wäre es, wenn wir zum Beispiel einen biologischen Produktionszyklus entwickeln könnten, der sich selbst repariert und erhält. Biologische Systeme arbeiten oft viel effizienter und unter milderen Bedingungen als rein chemische. Und indem wir solche Systeme nachbauen, kommen wir wieder auf neue Ideen, weil wir dabei sehr viele Enzyme bei der Arbeit sehen.

Folgt: Wo könnte die Synthetische Biologie besonders hilfreich sein?