In einer Millisekunde so viel Energie wie die Sonne an einem Tag

Zwerggalaxie in rund drei Milliarden Lichtjahren Entfernung 

Erst vor einem Jahr hatte das Forscherteam die genaue Position von FRB121102 ermittelt und herausgefunden, dass die Strahlungsausbrüche aus einem Sternentstehungsgebiet in einer Zwerggalaxie in rund drei Milliarden Lichtjahren Entfernung kommen. Der riesige Abstand zu der Quelle zeigt, dass in jedem Strahlungsausbruch eine gewaltige Menge an Energie freigesetzt wird – in einem nur eine Millisekunde lang andauernden Radioblitz ist es die gleiche Energie, wie sie unsere Sonne an einem ganzen Tag abstrahlt.

Zusätzlich zu der stärksten Drehung der Polarisationsrichtung, die in den bisher bekannten Radiostrahlungsausbrüchen beobachtet werden konnte, zeigen die beobachteten Ausbrüche von FRB121102  eine komplexe Struktur in Zeit und Radiofrequenz. „Die Profile der anderen bisher gefundenen Strahlungsausbrüche sind einfach mit gerade einem oder maximal zwei Spitzen im zeitlichen Verhalten. Bei FRB121102 haben wir aber schon Ausbrüche mit gleich sieben dieser Spitzen beobachtet, und die finden wir sowohl in der zeitlichen als auch in der Frequenzabhängigkeit der Radiostrahlung”, sagt Laura Spitler vom Bonner Max-Planck-Institut für Radioastronomie. „Wir versuchen zu verstehen, ob diese Strukturen in den Strahlungsausbrüchen direkt von dem Prozess kommen, der die Strahlung erzeugt, oder ob sie auf die Ausbreitung der Strahlung in dichtem Plasma in der direkten Umgebung zurückgehen.”

[note Als neuartige Möglichkeit, die Formen der Bursts zu visualisieren, hat Teammitglied Anne Archibald (Universität Amsterdam) 3D-Druckmodelle erstellt, welche die Helligkeit jedes Bursts in Abhängigkeit von der Zeit und der beobachteten Funkfrequenz  zeigen. Die Entwürfe stehen zum kostenlosen Download zur Verfügung: https://www.thingiverse.com/thing:2723399]

„Wir werden weiterhin systematisch überprüfen, wie sich die Eigenschaften der Strahlungsausbrüche mit der Zeit ändern”, sagt Jason Hessels, Universität Amsterdam und  ASTRON-Institut. „Mit diesen Beobachtungen sollte es uns möglich sein, zu entscheiden, welche der beiden Ursprungsmodelle für die Bursts zutrifft: ein Neutronenstern entweder in direkter Umgebung eines Schwarzen Lochs oder inmitten eines energiereichen kosmischen Nebels”, schließt er.

Mit eine ganzen Anzahl von neuen Radioteleskopen zur gleichzeitigen Erfassung größerer Areale am Himmel, die demnächst ihren Betrieb aufnehmen, ist zu erwarten, dass in den kommenden Jahren weitere Radioblitze nachgewiesen werden und die Forscher sind gespannt auf die Ergebnisse, um weitere fundamentale Fragen über die Natur der schnellen Radiostrahlungsausbrüche zu beantworten.

Das Forscherteam umfasst Daniele Michilli (University of Amsterdam & ASTRON), den Erstautor und Jason Hessels, ebenso University of Amsterdam und ASTRON, Andrew Seymour (NAIC, Arecibo), Laura Spitler (MPIfR Bonn), Vishal Gajjar (Space Science Laboratory, University of California at Berkeley), gefolgt von einer Anzahl weiterer Ko-Autoren: A.M. Archibald G. C. Bower, S. Chatterjee, J.M. Cordes, K. Gourdji, G. H. Heald, V.M. Kaspi, C. J. Law, C. Sobey, E. A. K. Adams, C. G. Bassa, S. Bogdanov, C. Brinkman, P. Demorest, F. Fernandez, G. Hellbourg, T. J. W. Lazio, R. S. Lynch, N. Maddox, B. Marcote, M. A.McLaughlin, Z. Paragi, S.M. Ransom, P. Scholz, A. P. V. Siemion, S. P. Tendulkar, P. Van Rooy, R. S. Wharton, D. Whitlow. Vom MPIfR sind Laura Spitler und Robert Wharton als Autoren beteiligt.

Laura Spitler ist Projektleiterin der Beobachtungskampagne am 305m-Radioteleskop Arecibo. Ihre Forschungsarbeit wurde durch das ERC-Forschungsprojekt BEACON (Kontraktnummer 279702) und durch die Max-Planck-Gesellschaft unterstützt.