36 auf einen Streich

Forscher beobachten „unmögliche“ Ionisation – Weltstärkster Röntgenlaser schießt Rekordzahl von Elektronen aus einem Atom

Mit dem weltstärksten Röntgenlaser haben Forscher der Max Planck Advanced Study Group (ASG) am Hamburger Center for Free-Electron Laser Science (CFEL) ein überraschendes Verhalten von Atomen entdeckt: Das sind deutlich mehr, als bei der Energie der verwendeten Röntgenstrahlung rechnerisch überhaupt möglich ist. Die Wissenschaftler stellen ihre unerwarteten Beobachtungen im Fachblatt „Nature Photonics“ vor. Das CFEL ist eine Kooperation von Max-Planck-Gesellschaft, DESY und Universität Hamburg. (Nature Photonics, 11.11.2012 online, re.)

Verliert ein Atom Elektronen, bekommt es eine positive elektrische Ladung – es wird ionisiert. Diese Ionisation ist umso stärker, je mehr Elektronen dem Atom entrissen werden. Die Forscher um den Physiker Daniel Rolles von der Max Planck Advanced Study Group am CFEL hatten an der Linac Coherent Light Source (LCLS) des US-Forschungszentrums SLAC in Kalifornien Atome des Edelgases Xenon mit intensiven Röntgenlaserblitzen beschossen. Die Lichtteilchen (Photonen) der verwendeten Röntgenstrahlung hatten mit 1,5 Kilo-Elektronenvolt (1,5 keV) rund tausendmal mehr Energie als sichtbares Licht. Trifft so ein energiereiches Photon auf ein Elektron in der Xenon-Atomhülle, gibt es seine Energie an das Elektron ab. Durch diesen Stoß kann das Elektron aus der Atomhülle herausgeschubst werden – je nachdem, wie fest es gebunden ist.

Rechnerisch lassen sich bei der verwendeten Energie bis zu 26 der 54 Elektronen des Edelgases herausschießen, die übrigen sind zu stark gebunden. Tatsächlich beobachteten die Wissenschaftler jedoch, dass bis zu 36 Elektronen aus den Atomen flogen. „Nach unserem Wissen ist das die höchste Ionisation, die jemals mit einem einzigen elektromagnetischen Impuls in einem Atom erreicht worden ist“, betont Rolles. „Unsere Beobachtung zeigt, dass die bestehenden theoretischen Ansätze modifiziert werden müssen.“