Sulfat-Aerosole kühlen das Klima weniger als gedacht

Bisher unbeachtete SO2-Oxidation verkürzt Lebensdauer wolkenbildender Sulfat-Partikel

Schwefeldioxid ist als Gegenspieler der Treibhausgase offenbar weniger effektiv als bisher angenommen. Aus ihm entstehen in der Luft Sulfat-Aerosolpartikel, die das Sonnenlicht reflektieren und als sogenannte Wolkenkondensationskeime die chemischen Vorgänge in Wolken beeinflussen. Sulfat-Aerosolpartikel helfen also, die Erde zu kühlen. Sie sind deshalb ein wesentlicher Bestandteil vieler Klimamodelle. Wie ein Team um Forscher des Max-Planck-Instituts für Chemie in Mainz (MPIC) nun jedoch herausfand, ist es wahrscheinlich, dass die meisten Modelle bei ihren Vorhersagen den Kühlungseffekt dieser Partikel überschätzt haben. Grund ist ein bisher weitgehend unberücksichtigter Reaktionsweg in den Wolken, den Mineralstaub katalysiert und der die Lebensdauer von Sulfat-Aerosolpartikeln und deren Fähigkeit, Sonnenlicht zu reflektieren, stark beeinflusst.

Als Kondensationskeime sind Aerosolpartikel ein wichtiger Ausgangspunkt für die Bildung von Wolken. Luftfeuchtigkeit lagert sich an ihnen an, und es entstehen kleine Tropfen, die schließlich zu Wolken werden. In den Wolken selbst jedoch verändert sich die chemische Zusammensetzung der Aerosolpartikel. Um herauszufinden, was sich dort genau abspielt und warum, untersuchten Dr. Eliza Harris und Dr. Bärbel Sinha vom Max-Planck-Institut für Chemie gemeinsam mit weiteren Wissenschaftlern aus Mainz und anderer Institute verschiedene Luftmassen. Das Besondere: Sie beobachteten eine Wolke, die sich an einem Berg aufstaute, während sie sich bildete. Auf diese Weise verfolgten sie die Veränderung der Aerosolbestandteile im Laufe der Wolkenenstehehung.

Isotopen-Analyse verrät, wie Sulfat entsteht

Harris und Sinha richteten dabei ihr Hauptaugenmerk auf die Analyse von Schwefelverbindungen. Deren Zusammensetzung untersuchten sie anhand von Luftproben, die zu unterschiedlichen Zeitpunkten genommen wurden: Vor dem Eintauchen in die Wolke, während des Aufenthalts in der Wolke und nachdem sie die Wolke wieder verlassen hatten.

Die Schwefelverbindungen in den Proben unterschieden sich in der Verteilung der Schwefelisotope. Isotope sind Atome desselben Elements mit einer unterschiedlichen Anzahl an Neutronen im Atomkern und lassen sich mit einem Massenspektrometer unterscheiden. Mithilfe der NanoSIMS-Ionensonde, eines besonders hochempfindlichen Massenspektrometers, konnte das Forscherteam sogar, Rückschlüsse auf die chemischen Abläufe ziehen. „Die relativen Reaktionsraten von Isotopen sind wie Fingerabdrücke, die verraten, auf welchem Weg das Sulfat aus dem Schwefeldioxid entstanden ist“, erklärt Eliza Harris ihre Untersuchungsmethode, die Teil ihrer Doktorarbeit in der Forschungsgruppe von Peter Hoppe am Max-Planck-Institut für Chemie war.