Max-Planck-Forschungspreis für Quanten-Nanowissenschaft

Orientierung eines einzelnen Spins in einem Diamanten ausgelesen und geschaltet

Jörg Wrachtrup, Professor der Universität Stuttgart und Fellow des Max-Planck-Instituts für Festkörperforschung, gelang es erstmals, die Orientierung eines einzelnen Spins in einem Diamanten auszulesen und zu schalten. Die einzelnen Spins finden sich im Diamanten dort, wo ein Stickstoff- statt eines Kohlenstoffatoms in dessen Kristallgitter eingebaut ist. Der Spin eines solchen NV-Zentrums – kurz für Nitrogen-Vacancy- oder Stickstoff-Leerstellen-Zentrum – reagiert sehr empfindlich auf andere Spins in seiner Umgebung. Wrachtrups Team arbeitet daran, auf dieser Basis einen nanoskopischen Kernspintomografen für einzelne Zellen zu entwickeln – so wie inzwischen manche andere Forschungsgruppe in der Welt. Der sensible Kern dieses Kernspintomografen wird der einzelne Spin eines Diamanten sein.

„Einzelne Zellen werden wir in wenigen Jahren untersuchen können“, sagt Jörg Wrachtrup. „Ich halte es aber auch für realistisch, einen künstlichen Nanodiamanten als Sensor für Kernspin-Untersuchungen in einer Zelle zu verwenden.“ Da kommt Jörg Wrachtrup das Preisgeld des Max-Planck-Forschungspreises gerade recht, weil sich damit ein Projekt auch über einen längeren Zeitraum unterstützen lässt. So kann er sich vorstellen, die Mittel zu verwenden, um die Nanodiamanten für solch diffizile Einsätze weiterzuentwickeln.

Die Spins der NV-Zentren eignen sich aber nicht nur als Sonden eines nanoskopischen Kernspintomografe, sondern auch als Quantenbit oder Qubit, also als kleinste Recheneinheit eines Quantencomputers. Denn in der Orientierung des Spins lässt sich die „0“ und „1“ eines Datenbits speichern. Jörg Wrachtrups Team hat an einem solchen NV-Zentrum bereits ein einfaches Rechenregister aus verschränkten Qubits erzeugt und damit grundlegende Operationen einer Quantenrechnung ausgeführt.

Rechnen ohne Widerstand

So wie Jörg Wrachtrup als Vorreiter der Quanten-Spintronik gilt, ist Robert J. Schoelkopf, Professor an der Yale University ein Erfinder der supraleitenden Qubits. Supraleiter transportieren Strom ohne elektrischen Widerstand. Die Qubits, die Robert Schoelkopf gemeinsam mit seinen Kollegen Michel Devoret und Steve Girvin an der Yale University entwickelt hat, bestehen aus supraleitenden Stromkreisen. Bei sehr tiefen Temperaturen verhält sich ein solcher widerstandsloser Stromkreis in gewissem Sinn wie ein einzelnes Atom: Obwohl darin rund eine Billion Elektronen ungehindert ihre Bahnen ziehen, kann der Stromkreis definierte Energiezustände einnehmen, die denen eines Atoms sehr ähneln. Die untersten beiden können die „0“ und „1“ eines Datenbits ebenso codieren wie die Orientierung des Spins in einem Magnetfeld.

Schoelkopf hat supraleitende Schaltkreise als Qubits eingeführt, die als kleinste Recheneinheit eines Quantencomputers dienen könnten, der manche Aufgaben viel schneller bewältigen soll als ein klassischer PC. Mit den supraleitenden Qubits, die im Durchmesser einige Mikro- oder gar Millimeter messen können, hat Schoelkopfs Team die Grenzen des Quantenregimes von der Nanodimension hin zu größeren Objekten verschoben. Lange gingen Physiker davon aus, dass sich die teils bizarren Quanteneffekte nur in allerkleinsten Dimensionen beobachten lassen. Demnach gebe es in größeren Systemen zu viele Störungen, die gerade die meist fragilen Quantenzustände, die für Anwendungen in einer neuartigen Informationsverarbeitung interessant sind, kaputt machen. Derzeit testen Physiker noch aus, wie groß Systeme tatsächlich sein können, sodass sie noch den Quantengesetzen unterliegen. Robert Schoelkopf hat bei dieser Suche nach den Grenzen der Quantenwelt mit den supraleitenden Qubits eine Marke gesetzt.

„Wir haben es geschafft unsere supraleitenden Qubits sehr robust gegen Störungen von außen zu machen“, erklärt der Physiker Schoelkopf. Inzwischen haben er und seine Mitarbeiter aus verschränkten widerstandslosen Stromkreisen auch elementare Quantenregister geschaffen, die einfache Rechenoperationen ausführen und die Keimzelle eines Quantencomputers bilden. So wundert es nicht, dass sich die supraleitenden Qubits unter den möglichen Kandidaten für die kleinsten Recheneinheiten eines Quantencomputers eine aussichtsreiche Ausgangsposition verschafft haben und Jörg Wrachtrup sagt: „Es ehrt mich zusätzlich, dass ich den Max-Planck-Forschungspreis zusammen mit Robert Schoelkopf erhalte, der mit den supraleitenden Qubits ein ganz neues Feld geöffnet hat.“

Die Preisverleihung findet am 27. November 2014 in Berlin statt.
->Quelle: mpg.de