Mit Licht zu Wasserstoff

Mit organischer Gerüstverbindung als Katalysator aus Wasser photolytisch Wasserstoff herstellen

Wissenschaftler des Max-Planck-Instituts für Festkörperforschung in Stuttgart und von der Ludwig-Maximilians-Universität München haben neue poröse Materialien für die Photokatalyse entwickelt, die mittels Licht aus Wasser den vielseitigen Energieträger Wasserstoff erzeugen können. Dieser polymere Photokatalysator ist chemisch robust. Zudem lässt sich die Rate der Wasserstoffproduktion über kleine strukturelle Veränderungen am Katalysator regulieren. Die organischen Netzwerke eröffnen neue Wege zu polymeren Photokatalysatoren mit präzise einstellbaren Eigenschaften.

[Organische Netzwerkverbindungen (COFs) sind in der Lage, Wasserstoff zu produzieren. Das Modell der COF-Struktur ist farbcodiert, blau entspricht Stickstoff, grau Kohlenstoff und weiß Wasserstoff. Bild © Nature Communications / Macmillan Publishers / CC-BY-4.0]

Bei der künstlichen Photosynthese wird mit Sonnenlicht Wasserstoff erzeugt, um die Energie aus der Sonne effizient speichern zu können. Da die bisherigen Systeme jedoch viele Mängel aufweisen, wird weltweit an effizienteren Verfahren geforscht. Chemiker um Professor Bettina Lotsch (München und Stuttgart) konnten nun erstmals zeigen, wie sich eine neue Klasse poröser organischer Materialien dazu nutzen lässt, molekular maßgeschneiderte Photokatalysatoren für die licht-induzierte Wasserstoffentwicklung herzustellen. Über ihre Ergebnisse berichten sie aktuell in der Fachzeitschrift Nature Communications.

Die Chemiker um Lotsch forschen unter anderem an sogenannten kovalenten organischen Netzwerken. „Solche zweidimensionalen Polymere verfügen über Eigenschaften, die für photokatalytische Prozesse wesentlich sind: Die Materialien sind kristalline und poröse Halbleiter, die sich zudem chemisch maßschneidern lassen“, sagt Bettina Lotsch. Sie werden bereits für die Speicherung von Gasen und als Sensoren untersucht, zudem haben sie Potenzial für Anwendungen in der Optoelektronik.

Effizienter und billiger

Bettina Lotsch untersuchte mit ihrem Team in Zusammenarbeit mit Forschern um Professor Christian Ochsenfeld, Inhaber des Lehrstuhls für Theoretische Chemie an der LMU, am Beispiel einer Triphenylarylplattform, inwiefern sich die porösen Polymere für die Photokatalyse eignen. „Der Vorteil dieser Materialklasse ist, dass sich ihre chemischen und physikalischen Eigenschaften nach Bedarf einstellen lassen“, sagt Dr. Vijay Vyas, Mitarbeiter in der Arbeitsgruppe von Bettina Lotsch am Max-Planck-Institut für Festkörperforschung. „Dadurch konnten wir ihre Fähigkeit, Wasserstoff zu produzieren, gezielt verbessern. Ihre Leistungskraft ist mit denen etablierter Kohlenstoffnitrid- und Oxid-Photokatalysatoren vergleichbar.“ Die neu entwickelten Materialien sind über Azin-Brücken verbunden, sie haben eine zweidimensionale Grundstruktur und wurden auf Basis von Hydrazin und Trialdehyden synthetisiert.

Die Gruppe Nanochemie von Bettina Lotsch am Max-Planck-Institut für Festkörperforschung in Stuttgart und an der Ludwig-Maximilians-Universität (LMU) München hat nun – gemeinsam mit Theoretikern um Ochsenfeld – einen weiteren Ansatz entwickelt. Die Forscher haben dabei sogenannte kovalente organische Netzwerkverbindungen (COFs, covalent organic frameworks) entworfen, die in der Lage sind, Wasserstoff zu produzieren.

COFs sind kristalline, hochmolekulare Polymere, bei denen bestimmte Ausgangsmoleküle zu sehr regelmäßigen, zwei- oder auch dreidimensionalen Strukturen vernetzt werden. Weil solche Netzwerkpolymere neben geeigneten optischen und elektronischen Eigenschaften eine relativ große Oberfläche aufweisen, zeigen sie auch gute katalytische Eigenschaften. Wichtiger noch ist aber die molekulare Präzision, mit der solche Photokatalysatoren entworfen und optimiert werden können: Damit bilden COFs eine nützliche Plattform, um Materialeigenschaften gezielt variieren und damit den Prozess der Photokatalyse rational steuern zu können.

Folgt: Elektronen auf Wanderschaft