Nanostrukturen: Kohle nach Maß

Neues Syntheseverfahren ermöglicht gezielte Herstellung verschiedener Nanostrukturen aus Kohlenstoff

Sie sind klein und kommen als runde, schichtförmige oder faserartige Partikel daher. Und sie bestehen weitgehend aus dem chemischen Element Kohlenstoff. Die Rede ist von zum Teil ungewöhnlichen Kohlenstoffnanostrukturen, wie sie Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung (MPIKG) in Golm bei Potsdam jetzt mit einem neuartigen Verfahren hergestellt haben.

Weniger Energieaufwand für H2O-Elektrolyse

Die Forscher haben bereits besondere katalytische Eigenschaften ihrer Nanostrukturen nachgewiesen. So sind sie zum Beispiel in der Lage, den Energieaufwand für die elektrolytische Spaltung von Wasser zu reduzieren. Dies ist interessant, wenn es um die Speicherung etwa erneuerbarer Energien geht. Aufgrund der großen Hohlräume können sich die Wissenschaftler aber auch eine Verwendung ihrer Nanopartikel zur Speicherung von Gasen wie Kohlendioxid vorstellen.

[note Ein Rezept für Nanofasern: Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung stellen gezielt kugel-, schicht- oder faserartige Nanostrukturen her, indem sie verschiedene organische Lösungsmittel in einer heißen Salzschmelze karbonisieren. Bislang wurden bei der Karbonisierung nur Feststoffe eingesetzt, aus denen ausschließlich kugelförmige Nanopartikel entstanden. Bild © MPI für Kolloid- und Grenzflächenforschung.]

Wenn man die Pizza zu spät aus dem Ofen holt, ist der Teig schwarz. Eine Verkohlung – aus den organischen Bestandteilen im Teig sind Moleküle mit hohem Kohlenstoffanteil geworden. Was in der heimischen Küche in aller Regel unerwünscht ist, kann bei manchen industriellen Prozessen gerade das Ziel sein. Die Gewinnung von Koks aus Kohle ist ein Beispiel für eine solche Karbonisierung, also einen Prozess, der den Kohlenstoffgehalt erhöht. Auch Industrieruße, wie sie etwa zum Einfärben von Autoreifen verwendet werden, weisen aufgrund gezielter unvollständiger Verbrennung hohe Kohlenstoffanteile auf.

Seit einigen Jahren arbeiten Wissenschaftler auch an der gezielten Synthese kohlenstoffreicher Nanomaterialien. Da solche Partikel sehr porös sind, mithin eine große spezifische Oberfläche besitzen und teilweise auch gut elektrischen Strom leiten, sind sie für viele Anwendungen interessant. Bisher erhält man bei gängigen Synthesen vor allem sphärische, also runde Kohlenstoffnanopartikel. Forschern am MPIKG gelang es nun aber mit einem neuen Syntheseverfahren, nicht nur sphärische, sondern auch schicht- sowie faserförmige Strukturen zu erzeugen.

Die Wahl der Ausgangsstoffe bestimmt die Struktur der Partikel

Die Forscher gingen dabei von insgesamt zehn verschiedenen organischen Lösungsmitteln aus, die sie jeweils karbonisierten. „Dabei zeigte sich, dass wir die spätere räumliche Struktur der Partikel über die Wahl des Ausgangsstoffes steuern können“, so Tim Fellinger, der am MPIKG die Gruppe „Carbon and Energy“ leitet.

Seine Gruppe erzeugte aber nicht nur vielfältige Nanostrukturen aus Kohlenstoff. Sie fand auch Wege, neben Kohlenstoff gezielt Atome anderer Elemente in ihren Produkten unterzubringen. So führten stickstoff- oder schwefelhaltige Lösungsmittel wie Pyridin oder Dimethylsulfoxid zu Nanokohlen, die bis zu 15 Massenprozent Stickstoff beziehungsweise Schwefel enthalten. Darüber hinaus haben die Forscher durch geeignete Zusätze auch Metalle wie Nickel, Kobalt oder Zink eingebaut – und sogenannte Nanokomposite erzeugt.

Folgt: Nickel-Kohle-Komposite als Katalysatoren für die Wasserspaltung