Rekordmessungen an Materie und Antimaterie

Umlauf-Frequenz ergibt Verhältnis Ladung-Masse

So schnell die geladenen Teilchen auch in der Penningfalle sind, die Zahl ihrer Umläufe können die Forscher sehr präzise messen. Da die Frequenz ihrer Rotation vom Verhältnis ihrer Ladung zu ihrer Masse abhängt, lässt sich dieser Wert auf diese Weise sehr gut bestimmen.

[note Das Schema der Penningfalle, die das BASE-Projektentwickelt hat. Antiprotonen, die am Cern durch den Beschuss von Atomkernen mit Protonen erzeugt und anschließend abgebremst werden, gelangen von links in die Falle. Einige 100 der Antiteilchen (violett) werden in der Vorratsfalle gespeichert. Ein Antiproton (rot) zirkuliert in der Messfalle, sodass sich sein Ladungs-Masse-Verhältnis bestimmen lässt. Unterdessen wird ein Hydrid-Ion (grün) an einer Elektrode geparkt. Grafik © Fabienne Marcastel, Georg Schneider/BASE-Kollaboration]

Allerdings gibt es bei den Experimenten des Base-Projektes eine Komplikation, die vielleicht nicht jeder erwartet: „Es ist heute noch sehr schwierig, eine Spannung auf die elfte Stelle nach dem Komma genau einzustellen“, erklärt Klaus Blaum. Genau das müsste den Forschern aber gelingen, wenn sie das Proton und das Antiproton in der Penningfalle einzeln schleudern wollten. Dann müssten sie das elektrische Feld in der Falle mit einer negativen Spannung erzeugen, um das positiv geladene Proton einzufangen. Das negativ geladene Antiproton müssten sie entsprechend mit einer positiven Spannung einpferchen, deren Betrag sehr genau mit dem der zuvor verwendeten negativen Spannung übereinstimmt.

Da es derzeit kaum möglich ist, für beide Teilchen elektrische Felder gleicher oder zumindest sehr genau bekannter Stärke zu erzeugen, messen die Physiker Proton und Antiproton in einem Experiment mit einem einzigen elektrischen Feld. Dafür müssen sie das Proton jedoch mit zwei Elektronen versehen und so in ein negativ geladenes Wasserstoff-Ion umwandeln. Denn nur so lässt es sich wie das ebenfalls negativ geladene Antiproton mit einer positiven Spannung bändigen.

Im magnetischen Moment könnten sich Proton und Antiproton unterscheiden

„Es wäre zwar noch besser, wenn wir am Proton selbst messen könnten“, sagt Klaus Blaum. Die Masse des Elektrons und seine Bindungsenergie seien aber sehr genau bekannt, so dass sich aus dem Ladungs-Masse-Verhältnis des Wasserstoff-Ions sehr gut der entsprechende Wert des Protons und dessen Masse ermitteln ließen. „Uns ist auf diese Weise die weltbeste Messung des Massevergleichs von Proton und Antiproton gelungen.“

Mit ihren Experimenten haben die Forscher im Vergleich zwischen Materie und Antimaterie also eine neue Stufe erreicht. „Die Forschung mit Antimaterie-Teilchen hat in den letzten Jahren enorme Fortschritte gemacht“, sagt , Generaldirektor des CERN. „Der Grad an Präzision, den Base erreicht hat, beeindruckt mich.“

Die Fertigkeiten, die sich die Base-Forscher in ihren bisherigen Messungen angeeignet haben, wollen sie nun nutzen, um weiter nach Unterschieden zwischen Materie und Antimaterie zu fahnden. „Sehr vielversprechend, um Differenzen zwischen Materie und Antimaterie aufzuspüren, sind die magnetischen Momente des Protons und Antiprotons“, sagt Stefan Ulmer. Das magnetische Moment des Protons haben die Forscher bereits vermessen. Jetzt wollen sie den entsprechenden Wert des Antiprotons ermitteln. “So könnten die Forscher möglicherweise brauchbare Hinweise finden, warum unsere Welt existiert”, endet eine Pressemitteilung der Max-Planck-Gesellschaft. (PH)

->Quellen: