Neues über Wechselwirkung zweier einzelner Wassermoleküle

Obwohl Wasser allgegenwärtig ist, sind die intermolekularen Schwingungen bislang nicht völlig verstanden

Ein internationales Forschungsteam hat neue Erkenntnisse über die Interaktion von Wassermolekülen gewonnen. Die Wissenschaftler konnten erstmals sogenannte intermolekulare Schwingungen vollständig beobachten. Von besonderer Bedeutung ist eine bestimmte Bewegung einzelner Wassermoleküle gegeneinander, die sogenannte gehinderte Rotationsbewegung. Die Erkenntnisse helfen unter anderem, die Energielandschaft der Moleküle besser zu bestimmen und somit die merkwürdigen Eigenschaften des Wassers besser zu verstehen. Die Arbeiten beschreibt einer Medienmitteilung der Bochumer Ruhr-Universität zufolge ein Team um Prof. Martina Havenith von der Ruhr-Universität Bochum und Prof. Joel Bowman von der Emory University in Atlanta zusammen mit Kollegen der Radboud University in Nimwegen und der Université de Montpellier in der Zeitschrift Angewandte Chemie International Edition vom 27.07.2019.

Unbekannte Wechselwirkungen

Wasser ist das wichtigste Lösungsmittel in Chemie und Biologie und besitzt eine Reihe von merkwürdigen Eigenschaften – zum Beispiel, dass es seine größte Dichte bei vier Grad Celsius erreicht. Verantwortlich dafür sind die speziellen Wechselwirkungen zwischen den Wassermolekülen. „Diese Wechselwirkungen zu beschreiben stellt die Forschung seit Jahrzehnten vor eine Herausforderung“, sagt Martina Havenith, Leiterin des Bochumer Lehrstuhls für Physikalische Chemie II und Sprecherin des Exzellenzclusters Ruhr Explores Solvation (Resolv).

Wasser hat eine Reihe von merkwürdigen Eigenschaften, für die spezielle Wechselwirkungen zwischen den Wassermolekülen verantwortlich sind. – Foto © Solarify

Versuche bei extrem tiefen Temperaturen

Das Team untersuchte die einfachste denkbare Wechselwirkung, nämlich zwischen genau zwei einzelnen Wassermolekülen, mittels Terahertz-Spektroskopie. Dabei schicken die Forscherinnen und Forscher kurze Strahlungspulse im Terahertz-Bereich durch die Probe, die einen Teil der Strahlung absorbiert. Das Absorptionsmuster verrät etwas über die Anziehung zwischen den Molekülen. Für die Versuche war ein Laser mit besonders starker Leuchtkraft erforderlich, wie er in Nimwegen zur Verfügung steht. Die Wassermoleküle analysierten die Forscher bei extrem tiefen Temperaturen. Dazu lagerten sie nacheinander einzelne Wassermoleküle bei 0,37 Kelvin in einen winzigen Tropfen aus superflüssigem Helium ein. Dieser Tropfen funktioniert wie ein Staubsauger, der einzelne Wassermoleküle einfängt. Aufgrund der niedrigen Temperatur kommt es zu einer stabilen Bindung von zwei Wassermolekülen zueinander, die bei Zimmertemperatur nicht stabil wäre.

Mit diesem Versuchsaufbau konnte die Gruppe erstmals ein Spektrum der gehinderten Rotationsbewegung von zwei Wassermolekülen aufnehmen. „Wassermoleküle bewegen sich permanent“, erklärt Havenith. „Sie drehen, öffnen und schließen sich.“ Ein Wassermolekül, das ein zweites Wassermolekül in seiner Nähe hat, kann sich jedoch nicht frei drehen – daher spricht man von gehinderter Rotationsbewegung.

Mehrdimensionale Energielandkarte

Die Wechselwirkung der Wassermoleküle lässt sich auch in Form des sogenannten Wasserpotenzials darstellen. „Das ist eine Art mehrdimensionale Landkarte, die vermerkt, wie sich die Energie der Wassermoleküle ändert, wenn sich zwischen den Molekülen die Abstände oder Winkel zueinander ändern“, beschreibt Martina Havenith. Aus dem Wasserpotenzial lassen sich alle Eigenschaften, beispielsweise Dichte, Leitfähigkeit oder Verdampfungstemperatur, ableiten. „Unsere Messungen erlauben nun den bestmöglichen Test aller bisher entwickelten Potenziale“, resümiert die Forscherin.

Die Experimente wurden finanziell unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC 2033). Die Nasa förderte die theoretischen Arbeiten mit dem Grant Nummer NNX16AF09G.

->Quelle und Originalveröffentlichung: