Supraleitung bei Raumtemperatur könnte möglich werden

Durch eng beieinander liegende Wasserstoffatome

Ein internationales Forscherteam hat am 03.02.2020 auf der Internetseite des National Laboratory Oak Ridge, Tennesee, veröffentlicht, dass Wasserstoffatome in einem Metallhydrid-Material viel enger beieinander liegen als jahrzehntelang vorhergesagt – eine Eigenschaft, die möglicherweise bei oder nahe der Raumtemperatur Supraleitung erleichtern könnte. Supraleiter übertragen Elektrizität ohne jeglichen Energieverlust aufgrund von Widerstand und würden die Energieeffizienz in einem breiten Spektrum von Verbraucher- und Industrieanwendungen revolutionieren. weiterlesen…

„Verbotene“ Verbindung aus Cer und Wasserstoff

Wasserstoffreiche Supraleiter bei geringen Temperaturen entdeckt

Forscher aus China, den USA und Russland haben die Regeln der klassischen Chemie gebrochen und eine „verbotene“ Verbindung aus Cer und Wasserstoff synthetisiert, die bei einem relativ niedrigen Druck von 1 Million Atmosphären Supraleitung zeigt – so eine Medienmitteilung aus dem Moscow Institute of Physics and Technology (MIPT). Sie wollten neue wasserstoffreiche Supraleiter (HTc) bei niedrigstem Druck entdecken und berichten in einem in Nature Communications publizierten Artikel über Vorhersage und experimentelle Synthese über ein Cer-Superhydrid – CeH9 – in einer laserbeheizten Diamant-Ambosszelle. Die Entdeckung dieses Superhydrids biete eine praktische Plattform, um die konventionelle Supraleitung in wasserstoffreichen Superhydriden weiter zu untersuchen und zu verstehen. weiterlesen…

Atomare Ursachen von Supraleitung

Bayreuther Forscher erzielen neue Erkenntnisse über Metallhydride

Supraleiter könnten eines Tages die Energieversorgung revolutionieren. Dafür müssen sie allerdings auch bei normaler Raumtemperatur elektrischen Strom ohne Widerstand transportieren. Im Unterschied zu anderen Supraleitern besitzen wasserstoffreiche Metallhydride diese Fähigkeit nicht erst bei extremer Kälte, sondern schon bei Tiefkühlschrank-Temperaturen. Ursachen sind atomare Prozesse, die – so eine Medienmitteilung – ein Forschungsteam der Universität Bayreuth jetzt erstmals experimentell nachgewiesen und in der Zeitschrift Physical Review X theoretisch erklärt hat. weiterlesen…