Heiße Explosionen auf kühler Sonne

Temperaturverteilung in den äußeren Schichten steht bisweilen Kopf

Die Sonne ist temperamentvoller als gedacht. Neben den Sonneneruptionen – gewaltigen Teilchen- und Strahlungsausbrüchen in der äußeren Atmosphäre – kommt es auch in der darunterliegenden kühleren Schicht zu regelrechten Explosionen: An manchen Stellen staut sich magnetische Energie auf und entlädt sich innerhalb weniger Minuten in Temperaturausbrüchen von bis zu 100.000 Grad. Belege für diese kurzlebigen Hitzenester fanden Wissenschaftler unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen nun erstmals in Daten des amerikanischen Weltraumteleskops IRIS.

Heiß ist nicht gleich heiß – zumindest, wenn es um die Sonne geht. Zwar herrschen in allen Schichten des zwiebelartig aufgebauten Sterns geradezu unvorstellbare Temperaturen, doch manche sind deutlich höher als andere. Mit etwa 5000 Grad ist etwa die sichtbare Oberfläche der Sonne, die Fotosphäre, vergleichsweise kühl. Weiter nach außen hin nehmen die Temperaturen leicht ab, um dann in der Atmosphäre der Sonne erst mäßig und dann rasant auf Werte von einer Million Grad anzusteigen.

Temperaturverlauf ständig in Bewegung

„Unsere Auswertungen zeigen nun, dass dieser Temperaturverlauf nicht überall gleich und zudem ständig in Bewegung ist“, sagt Hardi Peter vom Göttinger Max-Planck-Institut für Sonnensystemforschung, Erstautor einer jetzt im Fachmagazin Science erschienenen Studie. „In kleinen begrenzten Regionen sind offenbar für kurze Zeit auch in der kühlen äußeren Fotosphäre dramatisch höhere Temperaturen möglich.“

Zusammen mit einem internationalen Team hat Peter Daten des Weltraumteleskops IRIS (Interface Region Imaging Spectrograph) von aktiven Regionen auf der Sonne ausgewertet. Diese Bereiche in der Fotosphäre zeichnen sich durch hohe magnetische Feldstärken aus und sind die Entstehungsorte der dunklen Sonnenflecken, welche die Oberfläche der Sonne mal mehr, mal weniger zahlreich überziehen.

„In diesen Gebieten fanden wir Hitzetaschen etwa halb so groß wie Deutschland, die bis zu 20-mal so heiß sind wie ihre unmittelbare Umgebung“, sagt Peter. Nur für wenige Minuten blitzen diese Gebiete auf und kehren danach wieder zur Normaltemperatur zurück. Die dabei freigesetzte Energiemenge würde ausreichen, um Deutschland für 8000 Jahre mit Strom zu versorgen.