Photonische Kristallfaser als Sensor für alle Fälle

Fliegendes Mikrokügelchen in hohler Glasfaser misst Temperatur, Vibrationen und elektrische Felder mit hoher räumlicher Auflösung

Glasfasern können mehr als Daten transportieren. Ein spezieller Typ von Glasfasern lässt sich auch als hoch präziser Mehrzwecksensor nutzen, wie Forscher des Max-Planck-Instituts für die Physik des Lichts in Erlangen nun zeigen. Durch das Innere dieser hohlen photonischen Kristallfasern schickten die MPL-Forscher ein winziges Glaskügelchen, das unterschiedliche physikalische Größen wie ein elektrisches Feld, die Temperatur oder Vibrationen regelrecht erfühlen kann. Das fliegende Teilchen erfasst die Messgrößen über lange Strecken hinweg mit hoher Ortsgenauigkeit, und das sogar unter rauen Bedingungen, etwa in einer aggressiven chemischen Substanz oder im Innern einer Ölpipeline.

„Am Anfang stand die Idee, einen Radioaktivitäts-Sensor für das Innere eines Kernkraftwerkes zu entwickeln“, sagt Tijmen Euser vom Erlanger Max-Planck-Institut. Für ähnliche Aufgaben werden oft Glasfasern als faseroptische Sensoren verwendet. Gemessen wird dabei, wie das Licht, das durch die Faser geschickt wird, von einem äußeren Faktor beeinflusst wird. Mit einem solchen faseroptischen Sensor lässt sich eine physikalische Größe auch aus der Entfernung messen. Für die Messung der Radioaktivität in einem Reaktor würde sich ein faseroptischer Sensor empfehlen, weil er die ganze Oberfläche abdecken könnte, wenn die Faser um den Reaktor gewickelt wird. Doch wie sich herausstellte, verdunkelt radioaktive Strahlung das Innere herkömmlicher Glasfasern, sodass sich kein Licht mehr darin ausbreiten kann. Als Messinstrument für die Radioaktivität fallen diese Glasfasern also aus.

Die Glasfasern, denen wir vor allem hohe Raten in der Datenübertragung und damit ein schnelles Internet verdanken,  besitzen einen inneren Kanal aus Glas mit hohem Brechungsindex, umgeben von einem Mantel aus Glas mit niedrigem Brechungsindex. Der Unterschied im Brechungsindex sorgt dafür, dass ein Lichtstrahl an der Grenze zum Mantel reflektiert wird. Er bleibt auf diese Weise im Kern gefangen wie Wasser in einem Rohr und folgt der Glasfaser, auch wenn diese eine Kurve macht.

Zwei Laserstrahlen manövrieren Mikrokügelchen durch hohle Glasfaser

In photonischen Kristallfasern (PCFs), die Philip Russell, Direktor am Max-Planck-Institut für die Physik des Lichts, vor etwa 20 Jahren erfunden hat, ist der innere Kanal hingegen hohl und in der Regel mit Luft gefüllt. Der Hohlkanal wird seiner ganzen Länge nach von weiteren hohlen Kanälen umgeben. Der Durchmesser dieser Kanäle ist nur ein paar Mal so groß wie die Wellenlänge von Licht. Das führt dazu, dass die Kanäle die Ausbreitung des Lichts beeinflussen. Genauer gesagt, halten sie Licht im inneren Kanal gefangen – ähnlich wie die unterschiedlichen Glassorten in herkömmlichen Glassorten. Die besonderen Eigenschaften photonischer Kristalle ermöglichen jedoch einige Anwendungen, die mit herkömmlichen Glasfasern nicht möglich sind.

Für das Team um Tijmen Euser und Philip Russell war dabei der hohle Kern der Fasern entscheidend. Da sich der luftgefüllte Hohlraum durch radioaktive Strahlung nicht verdunkeln kann, sahen die Forscher in den PCFs eine interessante Alternative zu herkömmlichen faseroptischen Sensoren, um letztlich auch Radioaktivität zu messen. Ob sich photonische Kristallfasern prinzipiell als Sensoren eignen, prüften die Erlanger Physiker, indem sie die Fasern zunächst zur Messung elektrischer Felder, von Vibrationen und Temperaturen einsetzten.

Als Messsonde verwendeten sie dabei ein winziges Glaskügelchen, das durch den nur wenige Tausendstel Millimeter dünnen Hohlkanal der Kristallfaser geleitet wird. Dazu sendeten sie von beiden Enden der Faser je einen Laserstrahl durch den Kanal. Das Kügelchen reflektiert das Licht wie ein winziger Spiegel und erfährt dabei durch die Stöße der Lichtteilchen von beiden Seiten einen Druck. Indem die Forscher die Leistung der beiden Laserstrahlen unterschiedlich stark einstellten, wurde das Kügelchen in eine Richtung etwas stärker gedrückt und bewegte sich mit einer bestimmten Geschwindigkeit durch die Faser. Ähnlich wie die Beleuchtungseinheit eines Flachbettscanners kann das Teilchen nun jeweils eine Messgröße entlang der Glasfaser abtasten.

Folgt: Im starken elektrischen Feld dringt weniger Licht durch die Faser