Atomballett in Zeitlupe

So erhellend wie ein Zeitlupenvideo vom Trick eines Magiers

Mit ihrer Technik können die Hamburger Forscher Molekül dagegen filmen und so das schnelle Treiben eines Atomballetts im Detail zeigen. Das ist für die Wissenschaftler so erhellend ist wie ein Zeitlupenvideo, das den Trick eines Magiers offenbart, mit dem er ein Kaninchen aus dem Hut zaubert.

Um die Filmkamera für chemische Prozesse zu entwickeln, mussten Dwayne Miller und seine Mitarbeiter gewaltige experimentelle Herausforderungen meistern: Atombewegungen laufen extrem schnell auf der Zeitskala von einigen Zehn oder sogar Hundert Femtosekunden ab – das ist die Zeit, die Licht braucht, um den Durchmesser eines Haares zu durchqueren.

Die zweite Herausforderung lag in der Winzigkeit der Atome. Dazu muss man mindestens Zehntelnanometer auflösen können – ein Nanometer ist ein Milliardstel Meter. „Würde man einen Apfel bis auf den Durchmesser der Mondumlaufbahn vergrößern, dann wäre eines seiner Atome so groß wie der ursprüngliche Apfel“, veranschaulicht Stuart Hayes das Problem. Der schottische Forscher leitet in Millers Abteilung ein Team, dem gerade das Video eines chemischen Atomballetts gelungen ist.

Pump-Probe-Technik war nur wenigen Forschungsteams zugänglich

Nun gibt es seit rund dreißig Jahren Aufnahmetechniken für schnelle Atombewegungen, die das Gebiet der Femtochemie begründet haben. Bei der einfachsten Pump-Probe-Technik startet ein erster Pump-Laserblitz den chemischen Prozess, zum Beispiel eine Reaktion. Ihm folgt ein zweiter Probe-Laserblitz, der mit seiner ultrakurzen Femtosekundendauer den aktuellen Zustand wie ein Schnappschuss erfasst. Durch Variieren der Zeitspanne zwischen beiden Blitzen erhalten Forscher die Einzelbilder eines Zeitlupenvideos.

Allerdings hat die Methode mit zwei Laserblitzen einige Nachteile. Die Wellenlänge des Lichts muss sehr kurz sein, damit der zweite Laserblitz einzelne Atome im Bild auflösen kann. Normale Laser erreichen solche Wellenlängen vom extremen Ultravioletten bis in den harten Röntgenbereich hinein nicht. Ein weiteres Problem ist die notwendige Helligkeit des zweiten Lichtblitzes. „Je kürzer die Aufnahmezeit ist, desto hellere Blitze braucht man“, erklärt Miller. Dies zusammengenommen erfordert große, teure Anlagen, sogenannte Freie-Elektronen-Laser. Schon ihre geringe Zahl bietet nur relativ wenigen Forschungsteams einen zeitlich begrenzten Zugang. Aus Sicht der Chemie ist das ein kritischer Flaschenhals, denn die Zaubertricks vieler chemischer Reaktionen warten darauf, aufgedeckt zu werden.

Folgt: Die Idee: Femtosekunden-Elektronenblitze statt Laserpulse