Fast 90 Jahre altes Physik-Postulat nachgewiesen

Dispersion der „Bethe Strings” experimentell beobachtet

Ein internationales Forscherteam aus China, Großbritannien, Indien, Kanada und Deutschland (HZB und HZDr) hat erstmals in einem Experiment die Existenz von magnetischen „Bethe-Strings“ in einem Kristall nachgewiesen. Damit ist, so ein Artikel unter dem Titel „Dispersions of many-body Bethe strings” in Nature Physics, die Dispersionsrelation der Vielteilchen-Quantenzustände „Bethe Strings” aufgelöst.

Im Grundzustand sind die magnetischen Momente entweder auf- oder abwärts gerichtet, die zum äußeren Magnetfeld antiparallelen Spins (rot) sind nie zusammen (rechts). Durch Anregung können sich weitere Spins antiparallel ausrichten und Bethe-Ketten entstehen (weiße Spins, links).  © HZB

1931 sagte der theoretische Physiker Hans Bethe (bekannt durch seine Mitwirkung an A- und H-Bombe in Los Alamos, USA) voraus, dass es auch in einem eindimensionalen quantenmagnetischen Modell einen Vielteilchen-Quantenzustand geben kann, die nach ihm benannten „Bethe Strings”. 2018 bestätigte   Zhe Wang mit seinen Kollegen diese Theorie von einer Art „Quanten-Schnur” erstmals in einem Experiment. Dafür erhielt Wang den Walter-Schottky-Preis der Deutschen Physikalischen Gesellschaft. Nun hat der am II. Physikalischen Institut der Universität zu Köln tätige Wang als Teil eines Teams erstmals die Dispersionsrelation dieser „Vielteilchen-Schnur” untersucht.

Wang erklärt, dass die sogenannten „Bethe Strings” komplexe magnongebundene Zustände (sog. Magnone) seien, das heißt magnetische Anregungszustände, die sich ähnlich wie Teilchen verhalten: „Es wurde von Bethe vorhergesagt, dass Magnone nicht nur unabhängig voneinander in quantenmagnetischen Ketten existieren, sondern dass die magnetischen Anregungen auch zu einer einfachen Schnur-artigen Anregung, den ’Bethe Strings’, gebunden werden können.”

Fragestellungen zum Bau von eindimensionalen Quantenmagneten seien in der Theorie einfacher zu behandeln als in einem experimentellen Aufbau. Deshalb habe es fast 90 Jahre seit Bethes bahnbrechender Arbeit gebraucht, bis man den Nachweis für die Überlegungen hatte, so der Experimentalphysiker Wang über die moderne Hochleistungstechnik: „In der Realität ist es unheimlich anspruchsvoll, aus Festkörpermaterial ein eindimensionales System abzubilden und zu kontrollieren, da wir ja die Effekte des dreidimensionalen Raums überwinden müssen.” Es sei jedoch wichtig, die Theorie des Hans Bethe bestätigt zu wissen, da die eindimensionalen Modelle bis heute als basales Rechenmodell für viele theoretische Fragen der Quantenphysik genutzt werden.

Jetzt jedoch ist es den Forschern gelungen, diese Bethe-Strings erstmals experimentell nachzuweisen. Möglich wurde dies durch Neutronenstreuexperimente unter starkem Magnetfeldeinfluss. Dafür stellten Bera und seine Kollegen zunächst Kristalle aus einem Strontium-Kobalt-Vanadium-Oxid her (SrCo2V2O8). Weil nur die Kobaltatome in diesem Kristall magnetische Momente haben, richten sie sich alle entlang einer Kristallachse aus – das Material ist magnetisch eindimensional.

Für ihr Experiment platzierten die Forscher diesen Kristall in den Strahl einer starken Neutronenquelle und setzten sie starken Magnetfeldern von bis zu 25,9 Tesla aus. Unter diesen Bedingungen richten sich die magnetischen Dipolmoment der Kobaltatome so aus, dass benachbarte Momente einander aufheben. Als Folge entsteht das von Bethe postulierte Streifenmuster, wie die Messungen ergaben.

Der erste Nachweis der „Bethe Strings” wurde 2018 in einem Kettenantiferromagneten (SrCo2V2O8) entdeckt – über den Trick, rundherum Magnetfelder anzulegen. „Das äußere Magnetfeld spielte hier eine entscheidende Rolle. Nur in einer feldinduzierten, lückenlosen Phase des Kettenantiferromagneten fanden wir die Bethe-Zustände”, sagt Wang, „Diese spezielle Phase wurde bisher nur selten untersucht, da weder ein festes antiferromagnetisches Kettenmaterial noch das erforderliche starke Magnetfeld leicht zu erreichen sind.”

Die 2018 genutzte Hochfeld-Terahertz-Spektroskopie erlaubte es Wang und seinen Kollegen, die Eigenenergien der String-Zustände zu identifizieren. Doch habe die optische THz-Spektroskopie nicht die Dispersionsrelation geliefert, blickt Wang zurück.

Das internationale Forschungsteam hielt sich deshalb für die neuen Experimente an eine andere Technik, die sogenannte „unelastische Neutronenstreuungsspektroskopie”. Diese führte sie zu dem jetzt publizierten Durchbruch: So beruhen die erfolgreichen neuen Messungen auf hochwertigen Einkristallen und hohen Magnetfeldern an einer Neutronenstreuanlage, die kürzlich von Gruppen um Professorin Bella Lake vom Helmholtz-Zentrum Berlin und der TU Berlin durchgeführt wurden. Zusammen mit ihren Kollegen, insbesondere Anup Kumar Bera, wurde die Dispersion der Bethe-Strings in Hoch-Feldern gemessen. Präzise Berechnungen des eindimensionalen Modells wurden von Jianda Wu vom Tsung-Dao-Lee-Institut an der Jiao-Tong Universität Shanghai und Wang Yang von der University of British Columbia in Vancouver mit dem Bethe-Ansatz durchgeführt.

„Die enge Zusammenarbeit zwischen Experimental- und theoretischen Physikern ist für die Ergebnisse von besonderer Bedeutung”, sagt Wang: „Vielteilchen-Systeme sind im Allgemeinen schwierig zu untersuchen, während in diesen Systemen zugleich exotische und faszinierende Phänomene realisiert werden. Diese Phänomene zu erforschen ist ein wichtiges Ziel meiner Arbeit. Auf lange Sicht könnte das Verständnis dieser Phänomene zur Erfindung neuer Quantentechnologien führen”, so Wang.

Nach 90 Jahren ist es somit gelungen, das von Hans Bethe vorhergesagte exotischen Magnetverhalten solcher Kristalle experimentell zu belegen. Die Forscher hoffen nun, dass ihr Durchbruch die nähere Erforschung dieser Zustände auch in ähnlichen Systemen anstößt.

->Quellen: