Klimagas befeuert Chemie

Edelmetallkatalysatoren arbeiten effizienter

Leitner freut sich zwar über diesen Erfolg, ist aber überzeugt, dass auch edelmetallhaltige Katalysatoren in der Chemieproduktion Anwendung finden können. Denn in den Katalysatoren für CO2-Umwandlungen seien die Liganden meist mindestens so teuer wie das Metall. Zudem arbeiteten Edelmetallkatalysatoren oft deutlich effizienter als die Alternativen, die preiswertere Metalle wie Mangan, Eisen oder Nickel enthalten. „Wenn das bedeutet, dass in einem industriellen Prozess nur fünf Prozent weniger Rohstoffe eingesetzt werden müssen, überwiegt dieser Kostenvorteil oft den eines preiswerteren Metalls im Katalysator“, so Leitner. Und noch eine Eigenschaft sollte den Malus seltener und teurer Edelmetalle in den Katalysatoren wettmachen: Sie werden bei der Reaktion nicht verbraucht – theoretisch.

Praktisch nutzen sich Katalysatoren aber ab, etwa weil sich unerwünschte Substanzen als hartnäckige Verunreinigungen an sie anlagern oder weil die oft fragilen Liganden kaputt gehen. Molekulare Katalysatoren, wie sie auch die Mülheimer Forscher untersuchen, lösen sich zudem im Reaktionsmedium – Chemiker sprechen von homogener Katalyse –, so dass sie aufwändig abgetrennt werden müssen, nachdem sie ihren Job gemacht haben.

Deshalb bevorzugt die chemische Industrie meist die heterogene Katalyse: Dabei reagieren flüssige oder gasförmige Ausgangsstoffe an festen Katalysatoren – die Trennung erübrigt sich dann. Allerdings sind die festen Partnervermittler schwieriger systematisch für eine Wunschreaktion zu optimieren. „Wir arbeiten deshalb mit Wissenschaftlern aus anderen Abteilungen unseres Instituts die fundamentalen Gemeinsamkeiten dieser beiden Gebiete heraus, um damit das Beste aus beiden Welten auszunutzen“, erklärt Leitner.

Nanopartikel in einem molekularen Teppich

An der Grenze zwischen den beiden Welten arbeitet Alexis Bordet mit seinem Team. Die Chemiker verwenden nicht einzelne Metallatome in löslichen Katalysatoren, sondern metallische Nanopartikel und ionische Flüssigkeiten. Diese Substanzen bestehen aus zwei geladenen Komponenten, eine davon ein organisches Molekül in Form eines kurzen Fadens. Diese Molekülfäden knüpfen die Mülheimer Wissenschaftler chemisch an ein Material wie etwa Siliciumdioxid. So entsteht ein geladener molekularer Teppich, der die metallischen Nanoteilchen anzieht wie Velours den Staub. Die Reaktionspartner strömen dann über den metalldurchsetzten chemischen Flor und werden dabei unversehens verkuppelt.

Die molekularen Teppichfasern leisten dabei mehr, als nur die Nanoteilchen festzuhalten. „Die ionischen Flüssigkeiten interagieren stark mit den Nanopartikeln und können dabei selbst katalytisch wirken“, erklärt Bordet. „Das nutzen wir aus, um die beiden Komponenten zu maßgeschneiderten Katalysatoren zu kombinieren, mit denen wir Wasserstoff sehr selektiv auf Stoffe aus Biomasse oder CO2 übertragen können.“

Während Bordet das Katalysator-Recycling mit seinem Katalysator-Teppich umgeht, sucht Andreas Vorholt reaktionstechnische Lösungen, um der Industrie den Einsatz von gelösten molekularen Katalysatoren, die sich im Forschungslabor bewährt haben, zu erleichtern. Der Chemiker, der am Mülheimer Institut ebenfalls eine Forschungsgruppe leitet, hat auch Betriebswirtschaft studiert und schon als Berater der Industrie gearbeitet. Doch nicht erst in dieser Zeit ist ihm klargeworden: „Es gibt eine große Lücke zwischen dem, was die akademische Forschung ermöglicht, und dem, was die Industrie dann umsetzt. Wir möchten deshalb praxisrelevante Daten bereitstellen, damit die Industrie sagt: Das ist wirklich gut. Warum sollen wir das nicht auch mal ausprobieren?“

Folgt: Erst gut gemischt, dann perfekt getrennt