Quan­ten­com­pu­ter steigern Leistung von Brenn­stoff­zel­len und Bat­te­ri­en

Ma­te­ri­al­de­sign mit Quan­ten­tech­no­lo­gie

Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) simuliert elektrochemische Vorgänge in Batterien und Brennstoffzellen mit einem Quantencomputer. Durch gezieltes Design der Elektrodenmaterialien und -strukturen wollen die Forschenden höhere Leistungen und Energiedichten erzielen. Das Projekt QuESt bündelt interdisziplinäre Kompetenzen der Quantentechnologie und der Energiespeicherforschung am Helmholtz-Institut Ulm (HIU).

Das DLR forscht an neuen Materialien für leistungsfähigere Batterien und Brennstoffzellen. Dafür nutzen die DLR-Wissenschaftler nun einen Quantencomputer. Mit diesem simulieren sie elektrochemische Vorgänge im Innern der Energiespeicher. Damit lassen sich die eingesetzten Materialien so gestalten, dass Leistung und Energiedichte von Batterien und Brennstoffzellen deutlich steigen.

Das Besondere am Projekt QuESt (Quantencomputer Materialdesign für elektrochemische Energiespeicher und -wandler mit innovativen Simulationstechniken) ist der Einsatz eines Quantencomputers für eine sehr anwendungsnahe Aufgabe in der Materialforschung. QuESt kombiniert damit Grundlagenforschung mit angewandter Forschung auf dem Gebiet der Energiespeicher.

Quantenchemie bestimmt Leistung und Energiedichte

Materialdesign mit Quantentechnologie – Foto © IBM

Elektromobilität benötigt vor allem kleine und leichte Energiespeicher mit hoher Kapazität und Leistung. Material und Struktur der Elektroden sind dabei ausschlaggebende Faktoren. Sie beeinflussen die Energiedichte und die elektrische Spannung. Mit optimierten Materialien lässt sich zudem Zersetzungsprozessen vorbeugen und so die Lebensdauer von Akkus und Brennstoffzellen erhöhen.

Fließt Strom durch eine Batterie oder Brennstoffzelle, wandern Ionen im Inneren von einer Elektrode zur anderen. An den Elektrodenoberflächen geben die Ionen ein Elektron an oder nehmen eines auf. „Diese Vorgänge lassen sich mit Hilfe der Quantenphysik exakt beschreiben. Die Elektronen ändern dabei ihren quantenmechanischen Zustand. Diese Energiezustände simulieren wir mit einem Quantencomputer. So können wir berechnen, wie viel Energie in den elektrochemischen Reaktionen steckt oder wie schnell diese ablaufen“, erläutert Dr. Birger Horstmann, Leiter der Gruppe Theorie elektrochemischer Systeme am DLR-Institut für Technische Thermodynamik.

In den Simulationen vergleichen die DLR-Wissenschaftlerinnen und -Wissenschaftler das quantenchemische Zusammenspiel für verschiedene neuartige Materialien und Elektrodenstrukturen. Ihr Ziel ist, in Batterien möglichst hohe chemische Bindungsenergien der Elektronen zu erreichen. In Brennstoffzellen sollen Wasserstoff und Sauerstoff möglichst effizient miteinander reagieren.

Gezieltes Materialdesign von Batterieelektroden mit Quantencomputer

Im Projekt QuESt gehen die DLR-Institute für Technische Thermodynamik, für Quantentechnologie, für Softwaretechnologie und das Fraunhofer-Institut für Werkstoffmechanik neue Wege beim Materialdesign der Energiespeicher: Mit Hilfe eines Quantencomputers untersuchen die Forscherinnen und Forscher, wie in Batterien und Brennstoffzellen Atome und Moleküle mit den unterschiedlichen Elektrodenmaterialien zusammenwirken. „Quantensimulationen können das computergestützte Materialdesign revolutionieren. Dadurch wollen wir die chemische Zusammensetzung der Elektroden und deren mikroskopische Struktur optimieren“, so Birger Horstmann. „Mit einem Quantencomputer können wir die quantenchemischen Vorgänge an den Elektroden von Batterien und Brennstoffzellen ideal abbilden. Wir forschen daran, wie sich unser Quantencomputer hierfür am besten programmieren lässt“, erklärt Dr. Sabine Wölk vom DLR-Institut für Quantentechnologien.

Das Projekt QuESt nutzt den vom Land Baden-Württemberg finanzierten IBM-Quantencomputer der Fraunhofer-Gesellschaft. Dieser verwendet als Qubits winzige, supraleitende Spulen, sogenannte Josephson-Kontakte.

Quantensimulation von Energiespeichern auch für weitere Gebiete nutzbar

Die im QuESt-Projekt entwickelten Quantenalgorithmen sind zudem ein Ausgangspunkt für eine künftige Quanten-Software. Deren grundlegende Algorithmen und Lösungsschritte wären auf andere quantenphysikalische Fragestellungen übertragbar. Die Erkenntnisse aus der Simulation von Energiespeichern als quantenmechanische Vielteilchensysteme sollen sich auch in weiteren Forschungsbereichen anwenden lassen, beispielsweise in der Medizin oder der Chemischen Industrie.

Das Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg fördert das im Januar 2021 gestartete Projekt QuESt über zwei Jahre mit 1,5 Millionen Euro. In dem Projekt sind neben den DLR-Instituten und dem Fraunhofer IWM die Robert Bosch GmbH und Mercedes-Benz Research & Development North America Inc. als assoziierte Partner beteiligt.

Das Projekt QUESt bündelt am Helmholtz-Institut Ulm (HIU) mit der Universität Ulm interdisziplinäre Kompetenzen der Quantentechnologie und der Batterie- und Brennstoffzellenforschung. Das Helmholtz-Institut Ulm (HIU) wurde 2011 vom Karlsruher Institut für Technologie (KIT), der Universität Ulm sowie dem DLR und dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) als assoziierten Partnern gegründet.

Quantencomputer kennen mehr als 0 und 1

Ein Quantencomputer arbeitet anders als ein klassischer Computer: Seine Quantenbits, kurz Qubits, folgen den Gesetzen der Quantenphysik, die Vorgänge auf atomarer Ebene beschreibt. Die Bits eines klassischen Computers kennen nur zwei Zustände: 0 und 1. Qubits können hingegen unendlich viele Zwischenwerte annehmen. Dies erlaubt neuartige Algorithmen, die auf konventionellen Computern nicht möglich sind. Als Qubit dienen quantenphysikalische Objekte, wie beispielsweise Elektronen, Atome, Ionen oder Lichtquanten.

->Quelle: dlr.de/20210219_quest-quantencomputer-energiespeicher