Drei Katalysatoren lösen chemisches Problem

Hand in Hand in Hand

Für die organische Synthese, also für die Herstellung von Kohlenstoff-Verbindungen, ist die Entwicklung von Syntheseverfahren von Bedeutung, durch die sich das gewünschte Produkt in guter Ausbeute gewinnen lässt. Auf diesem Gebiet hat ein Forschungsteam unter der Leitung der Chemieprofessoren Frank Glorius (Universität Münster) und Kendall N. Houk (University of California, Los Angeles) jetzt ein Problem gelöst, das seit Jahren als Herausforderung galt: die katalytische Kohlenstoff-Wasserstoff- (C-H-) Arylierung von unaktivierten Alkenen. Dazu setzten sie ein System aus drei Katalysatoren ein. Die Studie wurde in der Eröffnungsausgabe der neu gegründeten Zeitschrift Nature Synthesis veröffentlicht. (Bild: Ternäres Nickel(Ni)-Wasserstoffatomtransfer(HAT)-Photodox(PC)-Synergiesystem (Mitte). Links – Strukturformel von Arylgruppe und eines unaktivierten Alkens, rechts – Aryliertes Alkens nach der Synthese© AG Glorius – WWU Münster) weiterlesen…

Auf dem Weg zur sauberen Katalyse

1,5 Millionen aus ERC für Uni-Jena-Projekt „CILCAT“

Pionierarbeit in der Wissenschaft leisten und Antworten auf Zukunftsfragen finden – bei dieser Aufgabe unterstützt der Europäische Forschungsrat (European Research Council – ERC) junge Forschende mit einem ERC Starting Grant. Dieser stellt bis zu 1,5 Millionen Euro für fünf Jahre zur Verfügung, um einer innovativen Projektidee zu folgen. Eine solche begehrte Förderung erhält in diesem Jahr Prof. Martin Oschatz von der Universität Jena, wie der ERC am 10.01.2022 bekanntgegeben hat. Der Chemiker möchte im Rahmen des nun geförderten Projekts „CILCat” die Katalyse, die in Jena begründet wurde, revolutionieren.
weiterlesen…

Katalysatoroberfläche mit atomarer Auflösung analysiert

Oberflächen-Struktur von Katalysator-Nanopartikeln sichtbar gemacht

So detailliert sind Katalysatoroberflächen selten zuvor abgebildet worden. Dabei kann jedes einzelne Atom entscheidend für die katalytische Aktivität sein. Mit atomarer Auflösung hat ein deutsch-chinesisches Forschungsteam die dreidimensionale Struktur der Oberfläche von Katalysator-Nanopartikeln sichtbar gemacht. Diese spielt eine entscheidende Rolle für die Aktivität und Stabilität der Partikel. Die detaillierten Einblicke gelangen mit einer Kombination aus Atomsondentomografie, Spektroskopie und Elektronenmikroskopie. Nanopartikel-Katalysatoren können zum Beispiel bei der Produktion von Wasserstoff für die chemische Industrie zum Einsatz kommen. Um die Leistung künftiger Katalysatoren zu optimieren, ist es unabdingbar, den Einfluss der dreidimensionalen Struktur zu verstehen. (Foto: Transmissions-Elektronenmikroskop (TEM) – © Johannes Schneider – Eig. Werk, commons.wikimedia.org, CC BY-SA 4.0) weiterlesen…

Blaulicht aktiviert Sauerstoff am besten

Neues Katalysatorsystem am LIKAT arbeitet mit Farben

Als Schlüssel zu umweltschonenden chemischen Reaktionen erweist sich zunehmend die Photochemie. Unter milden Temperaturen und Normaldruck sollen künftig Photonen – die Energie des Lichts – chemische Reaktionen bewirken. Ein Team um Esteban Mejía vom Leibniz-Institut für Katalyse in Rostock, LIKAT, und Dengxu Wang von der Shandong Universität in Jinan hat jetzt ein modulares System entwickelt, mit dem sich wie aus einem Lego-Baukasten nahezu beliebig Photokatalysatoren für Verfahren in der organischen Chemie zusammenstellen lassen. (Foto: Für den Laborversuch wird eine Reaktion zur C-H-Derivatisierung mit blauem Licht bestrahlt – Foto © m. frdl. Genehmigung, Xuewen Guo/LIKAT) weiterlesen…

Team von „Superhelden“ ermöglicht erfolgreiche OER

Neue Katalysatoren für die elektrochemische Wasserspaltung

Für die großtechnische Erzeugung von Wasserstoff durch Wasserelektrolyse ist die Entwicklung von langzeitstabilen und aktiven Katalysatoren für die Sauerstoffentwicklungsreaktion (OER) nach wie vor eine zentrale Herausforderung. Die meisten Katalysatoren leiden unter schwerer struktureller Korrosion, die bei schwankenden Potenzialen noch ausgeprägter wird. Einem Team von Wissenschaftlern der RWTH Aachen, der TU Berlin und des MPI CEC ist es gelungen kubische mangan- und cobalthaltige Partikel herzustellen, die als Katalysatoren für die elektrochemische Wasserspaltung eingesetzt werden können. (Bild: Catalysis Science & Technology 22, Cover – © rscl.li/catalysis)) weiterlesen…

Neue Katalysatoren für Brennstoffzellen

Fraunhofer IAP: effizient und mit konstant hoher Qualität

Wenn Wasserstoff oder Methanol in elektrische Energie umgewandelt werden soll, werden meist Brennstoffzellen eingesetzt. Nanoskalige Katalysatoren bringen zwar den Prozess in Schwung – bislang schwankt die Qualität dieser Materialien jedoch stark. Der Forschungsbereich CAN des Fraunhofer-Instituts für Angewandte Polymerforschung IAP räumt diese Probleme aus: Mit einem optimierten Katalysator und einer kontinuierlichen, reproduzierbaren Fertigung mit sehr guter Kontrolle über die Materialeigenschaften. (Foto: Charakterisierung von Brennstoffzellen – © Fraunhofer IAP) weiterlesen…

Realisierung universeller Katalysatoren erwartet

Einfache Herstellung eines Super-Multi-Element-Katalysators mit homogen 14 Elementen

Eine japanische Forschungsgruppe hat einen „nanoporösen Super-Mehrelement-Katalysator“ entwickelt, der 14 Elemente enthält, die auf atomarer Ebene gleichmäßig gemischt sind und als Katalysator verwendet werden. Eine hochentropische Legierung, die aus 10 oder mehr Elementen besteht, kann als Katalysator „universell und vielseitig“ sein, da sie in der Lage ist, ihre Morphologie frei zu verändern und je nach Reaktionsfeld aktiv zu werden. Bislang war es jedoch nicht einfach, Entropie-Legierungen aus mehr als 10 Elementen herzustellen, denn einige Elemente lassen sich nur schwer mischen, wie etwa Wasser und Öl. (Bild: Nanoporöser Super-Multielement-Katalysator – – © Takeshi Fujita, CC BY 3.0) weiterlesen…

Lösung für die Kunststoffknappheit

Neuer Katalysator könnte Versorgung mit einem der wichtigsten Kunststoffe stabilisieren

Auch wenn die Meere allmählich übervoll davon sind: Kunststoffe und Lebensmittelverpackungen, Automobilkomponenten, Kleidung, medizinische und Laborgeräte und zahllose andere Güter werden – nicht nur wegen Corona – Mangelware. Doch ein neuer, an der Universität von Michigan entwickelter chemischer Katalysator könnte die Produktion von mehr Rohstoffen für den (nach Polyethylen) weltweit am zweithäufigsten verwendeten Kunststoff ermöglichen – so Gabe Cherry am 08.07.2021 auf der Internetseite der Uni Michigan. Das Ausgangsmaterial, Propylen, wird zur Herstellung des Kunststoffs Polypropylen verwendet – acht Millionen Tonnen pro Jahr. Veröffentlicht unter dem Titel Stabile und selektive Katalysatoren für die Propandehydrierung am thermodynamischen Limit“ in Science. (Grafik: Propylen – Formel) weiterlesen…

„Chamäleon-Katalysator“ für Hydrierungsreaktionen

Auf dem Weg zu adaptiven katalytischen Systemen

Wasserstoff-Tanklastzug - Foto © Gerhard Hofmann für SolarifyCEC-Forscher entwickelten einen „Chamäleon-Katalysator“ für Hydrierungsreaktionen, wie sie am auf der institutseigenen Internetseite und in Nature Chemistry (open access: „Selektivitätskontrolle bei der Hydrierung durch adaptive Katalyse unter Verwendung von Ruthenium-Nanopartikeln auf einem CO2-empfindlichen Träger”) veröffentlichten. weiterlesen…

Wie Katalysatoren altern

Chemische Eigenschaften im Inneren in 3-D extrem genau und schneller als bislang messen

Forschende des schweizerischen Paul-Scherrer-Instituts haben eine neues Tomografie-Verfahren entwickelt, mit dem sie chemische Eigenschaften im Inneren von Katalysator-Materialien in 3-D extrem genau und schneller als bislang messen können. Die Anwendung ist gleichermaßen für Forschung und Industrie wichtig. Ihre Ergebnisse veröffentlichten die Forschenden am in Science Advances (Foto: Paul-Scherrer-Institut 2016 – © PSI – psi.ch, CC BY-SA 4.0, commons.wikimedia.org). weiterlesen…