Dünnschicht-CIGS-Perowskit-Tandemzelle mit 21,6 % Wirkungsgrad

Hauchdünn und extrem effizient

Ein HZB-Team hat einer Medienmitteilung vom 31.01.2019 folgend eine Tandem-Solarzelle mit reinen Dünnschicht-Solarzellen aus Perowskit und Kupfer-Indium-Gallium-Selenid (CIGSe) hergestellt und sie charakterisiert. Die Tandem-Solarzelle hat mit 21.6 % einen sehr hohen Wirkungsgrad. Durch weitere Optimierung könnte sie Wirkungsgrade über 30 % erreichen.

21,6 bedeuten zwar keinen Rekordwert, vermerkte Ralf Diermann am 04.02.2019 auf pv magazine  – den vermeldete im vergangenen November das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) und das Nanoelectronics Research Centre (Imec) aus Belgien mit 24,6 Prozent. Bemerkenswert sei die Arbeit der Helmholtz-Forscher aber trotzdem: Sie hätten eigenen Angaben zufolge ein einfaches, robustes Produktionsverfahren verwendet, das sich auch für die Aufskalierung auf große Flächen eigne.

Tandem-Solarzellen bestehen aus zwei Halbleitern mit unterschiedlichen Bandlücken. Dadurch können sie einen größeren Anteil des Sonnenspektrums zur Stromerzeugung nutzen. Besonders erfolgreich ist dieses Konzept, wenn man konventionelle Absorberschichten wie Silizium oder Kupfer-Indium-Gallium-Selenid (CIGSe) mit dem neuen Metall-Halogenid-Halbleiter Perowskit kombiniert. Denn Perowskite wandeln die blauen, energiereichen Anteile des Lichts in effizient in elektrische Energie um, während Silizium oder CIGSe eher rote und nahinfrarote Anteile wirksam umwandeln.

CIGSe- und Perowskit-Dünnschicht kombiniert

HZB-Forscher haben nun eine Dünnschicht-Solarzelle aus CIGSe mit einer dünnen Schicht Perowskit kombiniert, indem sie die CIGSe-Dünnschicht auf einem Substrat aufwachsen ließen. Dass dabei aber eine CIGSe-Oberfläche entsteht, die typischerweise etwas unregelmäßig bzw. rau ist, hbisher die Aufbringung der Perowskit-Topzelle mit nasschemischen Methoden. Daher hat das HZB-Team nun in Zusammenarbeit mit der TU Eindhoven die Eigenschaften der Tandem-Solarzelle dadurch verbessert, dass die Forschenden eine ultradünne, aber konform wachsende Zwischenschicht auf die CIGSe-Schicht aufgetragen und erst anschließend im HySPRINT-Labor des HZB die Perowskitschicht aufgeschleudert haben. Die so produzierte Tandem-Solarzelle wandelt 21,6 % des Sonnenspektrums in elektrische Energie um. Dabei bleibt die erzeugte Leistung stabil.

Eine extrem dünne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle – Grafik © HZB

Herstellung kostet wenig Energie und Material

Zwar erreichen Tandemzellen aus Silizium und Perowskit noch höhere Wirkungsgrade, aber theoretisch könnten auch CIGSe-Perowskit-Tandemzellen diese Wirkungsgrade erreichen.  Dazu kommt, dass die neue CIGSe-Perowskit-Tandemzelle nur aus Dünnschichten besteht, so dass der Material- und Energieverbrauch bei ihrer Herstellung extrem gering ist.

Für die industrielle Produktion geeignet

„Sehr wichtig ist auch, dass diese Tandemzelle auf einer rauen, unbehandelten CIGSe-Bottomzelle hergestellt wurde, was die Produktion vereinfacht und einen enormen Vorteil in Richtung Industrialisierung darstellt“, betont Prof. Rutger Schlatmann, Direktor des HZB-Instituts PVcomB. Die Tandem-Solarzelle wurde auf einer Fläche von 0,8 Quadratzentimetern realisiert, was deutlich größer ist als die quadratmillimetergroßen Flächen, die in der Laborforschung üblich sind.  „Rekordwerte werden erst ab Flächen von einem Quadratzentimeter anerkannt, dazu fehlt hier aber nicht viel. Daher werden wir nun diese Tandem-Solarzelle und ihre enorme Leistungsfähigkeit von einer unabhängigen Einrichtung zertifizieren lassen“, sagt Prof. Steve Albrecht, der am HZB eine BMBF-geförderte Nachwuchsgruppe leitet.

Effizienz von mehr als 30 % möglich

Mit dem Elektronenmikroskop und weiteren Messungen analysierten die Wissenschaftler den Schichtaufbau der Tandemzelle. Dabei konnten Erstautor Marko Jost, Postdoc in der Nachwuchsgruppe von Albrecht, und seine Kollegen auch die Beiträge der einzelnen Subzellen zur Leistung der Tandemzelle ermitteln. Die Arbeit zeigt damit Wege auf, um monolithische Perowskit-CIGSe-Tandemzellen weiter zu optimieren und Effizienzen über 30 % zu erreichen.

->Quellen: