Erfolg auf Weg zur künstlichen Fotosynthese
Tobias Erb vom MPI-Marburg meldet Durchbruch
Der Chemiker Tobias Erb vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg hat die Fotosynthese künstlich nachgebaut. Seine Schöpfung ist ein erster Schritt auf dem Weg zur synthetischen CO2-Fixierung in lebenden Zellen, zehnmal effizienter als die Natur und könnte helfen, das Treibhausgas CO2 aus der Atmosphäre zu holen. Die synthetische Biologie schafft neue biochemische Wege für die Umwandlung von CO2. In einem synthetischen Zyklus wird aus CO2 der zentrale Baustein Acetyl-CoA generiert. Den ForscherInnen gelang es, die drei Module des Zyklus jeweils erfolgreich in lebende Bakterien einzubringen. Die Arbeit ist damit ein bedeutender Schritt zur Realisierung synthetischer CO2-Fixierungswege im Kontext lebender Zellen. weiterlesen…
Die Versorgung der ständig wachsenden Weltbevölkerung mit Nahrungsmitteln und der gleichzeitige Erhalt der Umwelt stehen in einem Zielkonflikt.
Tobias Erb, Direktor und Leiter der Abteilung „Biochemie und Synthetischer Metabolismus“ am
Wasserstoff könnte ein wichtiger Teil unserer zukünftigen Energieversorgung sein: Man kann ihn lagern, transportieren und bei Bedarf verbrennen. Der Großteil des heute verfügbaren Wasserstoffs entsteht allerdings als Nebenprodukt der Erdgasförderung – das kann aus Klimaschutzgründen nicht so bleiben. Grüner Wasserstoff wird heute meist durch Elektrolyse mit Erneuerbarem Strom erzeugt, also Aufspaltung von Wasser in Wasserstoff und Sauerstoff mit Hilfe von elektrischem Strom, der aus erneuerbaren Energiequellen kommt, zum Beispiel von Photovoltaikanlagen. An der TU Wien wurde einer
Das Sonnenlicht als Quelle für die klimafreundliche Energieversorgung nutzen: Lange vor großen Initiativen wie dem europäischen „Green Deal“ oder der „nationalen Wasserstoffstrategie“ hat der Transregio-Sonderforschungsbereich (SFB)
Forscherinnen und Forschern der
Nicht nur koreanische Forscher arbeiten daran, die künstliche Photosynthese in die Realität umsetzen, um Kohlenstoffneutralität oder einen Netto-Null-Kohlenstoffemissionswert zu erreichen. Die künstliche Photosynthese ahmt die natürliche nach, indem sie Energie des Sonnenlichts zur Umwandlung von Kohlendioxid in hochwertige Verbindungen wie Ethylen, Methanol und Ethanol nutzt. Nun hat ein Forscherteam aus Seoul unter dem Titel: „W@Ag-Dendriten als effizienter und dauerhafter Elektrokatalysator für die Umwandlung von Sonnenenergie in CO unter Verwendung eines skalierbaren photovoltaisch-elektrochemischen Systems“ ein Zwischenergebnis in
Es klingt einfach, und die Natur macht es uns vor: Grüne Pflanzen speichern Sonnenenergie, indem sie – mittels Licht und Chloroplasten – Wasser in Wasserstoff und Sauerstoff spalten. Die Forschung reizt es, auf ähnliche Weise zum Wasserstoffgas (H2) zu gelangen, denn „grün“ produziert gilt es als Protagonist einer nachhaltigen Energie- und Grundstoffwirtschaft. Jacob Schneidewind vom
Um eine umweltfreundliche, klimaresiliente Wasserstoffwirtschaft zu verwirklichen, müssen wir in der Lage sein, Wasserstoff in großen Mengen nachhaltig zu produzieren. Eine Möglichkeit dazu ist die Wasserspaltung durch „künstliche Photosynthese“, ein Verfahren, bei dem Materialien, so genannte „Photokatalysatoren“, die Sonnenenergie nutzen, um aus Wasser Sauerstoff und Wasserstoff zu erzeugen. Die wichtigsten Merkmale der Wasserspaltung sind ihre Haltbarkeit und Effizienz. Ein „Tandem“ aus TiO2 und 3C-SiC, langlebige Photokatalysatoren mit einer Langzeithaltbarkeit von 100 Tagen ist deutlich länger ist als bei den meisten Photoelektroden und Photokatalysatoren – so Professor