Weiterer Schritt zur künstlichen Photosynthese

MPI-Forscher entdecken katalytisches Zwischenprodukt der biologischen Wasseroxidation

Einem internationalen Forscherteam um Dimitrios Pantazis, Gruppenleiter am Max-Planck-Institut für Kohlenforschung, ist ein bedeutender Schritt zur Entschlüsselung des Mechanismus der Wasseroxidation durch Pflanzen gelungen. In der modernen Chemie gibt es viele Bemühungen, mit synthetischen Katalysatoren die bemerkenswerte Leistung der Wasseroxidation zu reproduzieren, die in der Natur von photosynthetischen Organismen vollbracht wird. Pflanzen nutzen das Sonnenlicht, um Wasser in Sauerstoff, Protonen und Elektronen zu spalten. Dies ist die Quelle des Sauerstoffs, den wir atmen, während die Protonen und Elektronen in enzymatischen Reaktionen verwendet werden, die atmosphärisches Kohlendioxid in Biomoleküle einbauen. Trotz jahrzehntelanger Forschungsanstrengungen bleiben viele Details dieses natürlichen Prozesses im Dunkeln. (Abbildung: EPR-Spektroskopie und quantenchemische Untersuchung des Wasseroxidationskatalysators der biologischen Photosynthese – © kofo.mpg.de) weiterlesen…

Doch künstliche Photosynthese möglich?

Drahtlose Vorrichtung macht aus Sonnenlicht, CO2 und Wasser sauberen Kraftstoff

Forscher haben einer Medienmitteilung der Universität Cambridge zufolge ein eigenständiges Gerät entwickelt, das Sonnenlicht, Kohlendioxid und Wasser in einen kohlenstoffneutralen Brennstoff umwandelt, ohne dass zusätzliche Komponenten oder Elektrizität benötigt werden. Das sei ein bedeutender Schritt auf dem Weg zur künstlichen Photosynthese. Es basiere auf einer fortschrittlichen „Photosheet“-Technologie und wandelt Sonnenlicht, Kohlendioxid und Wasser in Sauerstoff und Ameisensäure um – einen speicherbaren Brennstoff, der entweder direkt verwendet oder in Wasserstoff umgewandelt werden kann. weiterlesen…

Photosynthese in kleinen Tropfen

Forschende entwickeln „künstlichen Chloroplasten“

Pflanzen nutzen seit Jahrmillionen CO2 aus der Luft mithilfe von Sonnenenergie. Das will das Max-Planck-Forschungsnetzwerk MaxSynBio nachahmen: künstliche Zellen als nachhaltige und umweltschonende Bioreaktoren. Einem Max-Planck-Forscherteam um Tobias Erb vom Institut für terrestrische Mikrobiologie in Marburg ist es einer Medienmitteilung vom 07.05.2020 zufolge gelungen, eine Plattform zum automatisierten Bau zellgroßer Photosynthese-Module zu entwickeln. Die „künstlichen Chloroplasten“ sind in der Lage, CO2 mittels Lichtenergie zu binden und umzuwandeln. Seine Ergebnisse veröffentlichte das Forscherteam in der jüngsten Ausgabe der Fachzeitschrift Science. (Foto: Mikrotröpfchen von ungefähr 90 Mikrometern Durchmesser und mit den gewünschten Enzymen ausgestattet, nutzen die semi-synthetischen Chloroplasten pflanzliche Thylacoid-Membranen zur Energieerzeugung. Sie fixieren auf diese Weise nach dem Vorbild der Natur Kohlendioxid mittels Sonnenenergie. – © Max-Planck-Institut für terrestrische Mikrobiologe/Erb) weiterlesen…

Fotosynthese im Tropfen

MPG-Forscher entwickelten künstlichen Chloroplasten

Pflanzen - Foto © SolarifyPflanzen können es bereits seit Jahrmillionen: Kohlendioxid aus der Luft mithilfe von Sonnenenergie nutzbar machen. Künstliche Zellen als nachhaltige und umweltschonende Bioreaktoren zu bauen, dieser Herausforderung ist das Max-Planck-Forschungsnetzwerk MaxSynBio auf der Spur. Ein Max-Planck-Forscherteam um Tobias Erb vom Institut für terrestrische Mikrobiologie in Marburg hat nun eine Plattform für den automatisierten Bau zellgroßer Fotosynthese-Module entwickelt. Die künstlichen Chloroplasten sind in der Lage, das Treibhausgas Kohlendioxid mittels Lichtenergie zu binden und umzuwandeln. weiterlesen…

Das 136-Millionen-Atom-Modell

Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist lebenswichtig. In einer der weltweit größten Simulationen eines Biosystems haben Wissenschaftler einer folgend seinen komplexen Prozess für eine Komponente eines Bakteriums nachgeahmt – am Computer, Atom für Atom. Die am 14.11.2019 in der Zeitschrift Cell veröffentlichte Arbeit ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. Unter der Leitung der University of Illinois (U. of I.) war auch ein Team der Jacobs University Bremen an der internationalen Forschungszusammenarbeit beteiligt. (Foto © andreas160578 auf Pixabay) weiterlesen…

Künstliches Blatt produziert erfolgreich reines Gas

Syngas auf nachhaltige und einfache Weise direkt produziert

Ein weit verbreitetes Gas, das derzeit aus fossilen Brennstoffen hergestellt wird, kann stattdessen mit einem „künstlichen Blatt“ hergestellt werden, das nur Sonnenlicht, Kohlendioxid und Wasser verwendet und schließlich zur Entwicklung einer nachhaltigen Alternative zu flüssigem Kraftstoff verwendet werden könnte. Die klimaneutrale Vorrichtung setzt neue Maßstäbe im Bereich der Solarkraftstoffe, nachdem Forscher der University of Cambridge gezeigt haben, dass es das Gas – Syngas genannt – auf nachhaltige und einfache Weise direkt produziert werden kann. weiterlesen…

Meilenstein auf Weg zu solarer Wasserspaltung

Aber noch nicht wettbewerbsfähig

III-V-Mehrfachsolarzellen können extreme Wirkungsgrade erreichen – mehr als herkömmliche Siliziumzellen. Allerdings sind die Kosten der III-V-Halbleiter noch zu hoch für den Einsatz in Flachmodulen. Wissenschaftler haben einer Medienmitteilung der Technischen Universität Ilmenau vom 30.10.2019 zufolge in dem vom Fraunhofer-Institut für Solare Energiesysteme ISE geführten Verbundprojekt MehrSi jetzt einen weltweit noch nicht erreichten Wirkungsgrad spezieller Solarzellen erzielt: 24,3 Prozent des von monolithischen, auf Silizium gewachsenen III-V-Dreifachzellen aufgenommenen Sonnenlichts wurden in elektrische oder chemische Energie umgewandelt – ein Meilenstein auf dem Weg zur direkten solaren Wasserspaltung zur Gewinnung von Wasserstoff. Partner des Fraunhofer ISE im soeben erfolgreich abgeschlossenen „MehrSi“-Projekt waren neben der TU Ilmenau die Philipps-Universität Marburg und der Anlagenhersteller Aixtron SE. weiterlesen…

Licht hält chemische Reaktionen in Gang

Erstmals entschlüsselt

Ein Forscherteam des Leibniz-Instituts für Photonische Technologien e.V. (IPHT) in Jena hat eine Methode entwickelt, die „entscheidende Erkenntnisse für die Weiterentwicklung nachhaltiger Energiewandler liefert“ – so eine Medienmitteilung des Leibniz-IPHT vom 22.08.2019. Derzufolge konnten die Wissenschaftler erstmals sichtbar machen, nach welchen Mechanismen komplexe, mehrschrittige lichtgetriebene Prozesse funktionieren. weiterlesen…

Pflanzen als Vorbild

Buch „Künstliche Photosynthese – besser als die Natur“

„Die künstliche Photosynthese ist der Heilige Gral der Forschung“, meint Leticia González, Vorständin des Instituts für Theoretische Chemie an der Universität Wien laut einem Artikel in uni:view vom Januar 2019: „Schon alleine deswegen, weil wir ein Energieproblem haben und dringend saubere, nachhaltige Energieträger benötigen.“ Nun diskutieren drei Wissenschaftler (Holger Dau, Philipp Kurz und Marc-Denis Weitze) in einem neuen Buch unter dem Titel „Künstliche Photosynthese – besser als die Natur“, welches Potenzial die künstliche Photosynthese hat.
weiterlesen…

Chancen der künstlichen Photosynthese

Regierung: „Potenzieller Faktor einer erfolgreichen Energie- und Rohstoffwende“

Die Bundesregierung sieht in ihrer Antwort (19/7885) auf die Kleine Anfrage der FDP-Fraktion (19/7112) die „weitere Erforschung der künstlichen Photosynthese als potenziellen Faktor einer erfolgreichen Energie- und Rohstoffwende“ – so zitierte der parlamentseigene Pressedienst heute im bundestag am 18.02.2019 aus der Antwort. Zwar befinde sich „die technologische Reife von künstlichen Photosynthese-Systemen derzeit meist auf der Stufe des Nachweises der prinzipiellen Funktionstüchtigkeit (‚proof of concept‘) sowie geeigneter Versuchsaufbauten im Labor“. Aufgrund solcher wissenschaftlich-technischer Herausforderungen sei daher eine wirtschaftliche Anwendung gegenwärtig noch nicht in Sicht. „Gleichwohl könnte die künstliche Photosynthese das Potential haben, neue Wege der nachhaltigen Energie- und Rohstoffversorgung zu ebnen“. weiterlesen…