Batterie, so groß wie ein Salzkorn
Kleinste Batterie der Welt kann Computer in Staubkorngröße antreiben
Ein Forschungsteam unter Federführung der TU Chemnitz hat unter Beteiligung des IFW Dresden und des Changchun Instituts für Angewandte Chemie am 19.02.2022 eine anwendungsnahe Methode für ein bisher ungelöstes Problem der Mikroelektronik vor – veröffentlicht open access in Advanced Energy Materials.(Bild: Kleinste Batterie der Welt – kleiner als ein Salzkorn – Grafik © bilder.tu-chemnitz.de/IFW Dresden) weiterlesen…
Der Transport von Energie zwischen Atomen und Molekülen ist Grundlage allen Lebens. Er basiert auf zwischenatomaren Kräften, der sogenannte Dipol-Dipol-Wechselwirkung. Der Arbeitsgruppe von Prof. Herwig Ott an der
Grüner Wasserstoff benötigt hocheffiziente (Elektro-)Katalysatoren. Auch für die chemische Industrie, die Düngemittelproduktion und andere Wirtschaftszweige sind Katalysatoren unerlässlich. Neben den Übergangsmetallen sind inzwischen eine Vielzahl anderer metallischer oder nichtmetallischer Elemente in den Fokus der Forschung gerückt. In einem
Auch in den kommenden Monaten sinkt die Solarförderung für neue PV-Anlagen um jeweils 1,4 Prozent. Im Dezember sind PV-Anlagen mit insgesamt etwas mehr als 421 MW neu bei der
„US-Physiker haben einen Meilenstein auf dem Weg zur Nutzung der Kernfusion erreicht: Per Laser entfachten sie eine Fusionsreaktion, die sich weitgehend selbst erhielt“ – das schreibt
Wer Wasserstoff als Energiequelle nutzen will, braucht Elektrolyseure. Doch die sind rar und teuer, weil sie bisher noch weitgehend von Hand gefertigt werden. Damit sie künftig im industriellen Maßstab produziert werden können, entwickelt ein Forschungsteam vom
Dazu kommt: Trägersubstanzen können die katalytische Aktivität, Selektivität und Stabilität von Metallnanopartikeln durch verschiedene Metall-Träger-Wechselwirkungen (MSI) stark beeinflussen oder sogar dominieren. Die zugrundeliegenden Prinzipien sind jedoch noch nicht vollständig geklärt, da die MSI von der Zusammensetzung, Größe und Facette sowohl der Metalle als auch der Träger beeinflusst werden. Anhand von Ru/TiO2 auf Rutil- und Anatas-Trägern (beide Formen des TiO2) als Modellkatalysatoren zeigen Forscher des
Die Anzahl der Möglichkeiten erschwert die Suche nach aussichtsreichen Materialien. Ein deutsch-dänisches Team hat dafür eine effiziente Methode entwickelt. In Materialien, die aus fünf oder mehr Elementen zusammengesetzt sind, liegen effiziente Elektrokatalysatoren verborgen, die zum Beispiel für die Erzeugung von grünem Wasserstoff gebraucht werden. Ein Team der
So detailliert sind Katalysatoroberflächen selten zuvor abgebildet worden. Dabei kann jedes einzelne Atom entscheidend für die katalytische Aktivität sein. Mit atomarer Auflösung hat ein deutsch-chinesisches Forschungsteam die dreidimensionale Struktur der Oberfläche von Katalysator-Nanopartikeln sichtbar gemacht. Diese spielt eine entscheidende Rolle für die Aktivität und Stabilität der Partikel. Die detaillierten Einblicke gelangen mit einer Kombination aus Atomsondentomografie, Spektroskopie und Elektronenmikroskopie. Nanopartikel-Katalysatoren können zum Beispiel bei der Produktion von Wasserstoff für die chemische Industrie zum Einsatz kommen. Um die Leistung künftiger Katalysatoren zu optimieren, ist es unabdingbar, den Einfluss der dreidimensionalen Struktur zu verstehen. (Foto: Transmissions-Elektronenmikroskop (TEM) – ©
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar, denn sie richten beträchtlichen Schaden an. Ein Team vom