Ein Schritt auf künstliche Photosynthese zu

Mittels Silber-Wolfram-Katalysatoren

Nicht nur koreanische Forscher arbeiten daran, die künstliche Photosynthese in die Realität umsetzen, um Kohlenstoffneutralität oder einen Netto-Null-Kohlenstoffemissionswert zu erreichen. Die künstliche Photosynthese ahmt die natürliche nach, indem sie Energie des Sonnenlichts zur Umwandlung von Kohlendioxid in hochwertige Verbindungen wie Ethylen, Methanol und Ethanol nutzt. Nun hat ein Forscherteam aus Seoul unter dem Titel: „W@Ag-Dendriten als effizienter und dauerhafter Elektrokatalysator für die Umwandlung von Sonnenenergie in CO unter Verwendung eines skalierbaren photovoltaisch-elektrochemischen Systems“ ein Zwischenergebnis in Applied Catalysis B: Environmental publiziert (open access). (Grafik: Kohlenstoffgestützter 3D-Silberdendrit-Katalysator auf Wolframkernbasis, BY-NC-ND 4.0 – © sciencedirect.com) weiterlesen…

Feststoffbatterie vor Sprung in die industrielle Anwendung?

BMBF-Projekt „SoLiS“ erforscht innovatives Lithium-Schwefel-Batteriekonzept

Das im Juli 2021 gestartete Forschungsprojekt „SoLiS – Entwicklung von Lithium-Schwefel Feststoffbatterien in mehrlagigen Pouchzellen“ soll einer Medienmitteilung des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS (Dresden) vom zufolge ein vielversprechendes Batteriekonzept aus der Grundlagenforschung in die industrielle Anwendung überführen. Dank hoher Speicherkapazitäten und geringer Materialkosten des Schwefels ermöglicht diese Zelltechnologie potenziell den Aufbau sehr leichter und kostengünstiger Batterien. Das BMBF fördert daher (unter IWS-Federführung) fünf Partner aus Wissenschaft und Wirtschaft mit einer Gesamtsumme von knapp 1,8 Millionen Euro. Die Forschungsergebnisse könnten zum Beispiel Anwendungen in der elektrischen Luftfahrt ermöglichen. weiterlesen…

Entwicklungsstufen eines arbeitenden Katalysators

Serena DeBeer: Röntgenspektroskopische Untersuchung an einem Methantrockenreformierkatalysator

Die trockene Methanreformierung (DMR) bietet eine Möglichkeit, schädliche Treibhausgase in industriell nutzbares Synthesegas umzuwandeln. Deshalb wächst das Interesse an Katalysatoren auf Nickel-Basis für die DMR stetig. In ihrem Jahrbuchbeitrag 2020 beschreibt Prof. Serena DeBeer, Direktorin der Abteilung Anorganische Spektroskopie des Max-Planck-Institut für Chemische Energiekonversion in Mülheim an der Ruhr (MPI CEC) , am 10.08.2021 röntgenspektroskopische Untersuchungen an einem Methantrockenreformierkatalysator. Der vollständige Artikel kann auf der Webseite der Max-Planck-Gesellschaft nachgelesen werden. (Grafik: Speziell konstruierter Nanoreaktor mit einem In-situ-Gassystem für STXM-Studien eines arbeitenden Katalysators. Reaktantgase strömen von der linken Seite ein. Röntgenstrahlen überwachen die Veränderung der Partikel unter kontrollierter Temperatur und Druck – © MPI für chemische Energiekonversion) weiterlesen…

Was Chemie zur Energieversorgung der Zukunft beitragen kann

GDCh-Wissenschaftsforums Chemie 2021 im August 2021 mit Energie-Schwerpunkt

Wie reibungslos die notwendige Energiewende gelingen wird, ist stark von den aktuellen Fortschritten der chemischen Energieforschung abhängig. Aus diesem Grund stellt die Gesellschaft Deutscher Chemiker (GDCh) einer Medienmitteilung vom 13.07.2021 zufolge die Beiträge der Chemie zur Energieversorgung der Zukunft in den Fokus des zweiten Veranstaltungstages des GDCh-Wissenschaftsforums Chemie (WiFo) am 31.08.2021. Neben einem prominent besetzen Plenarsymposium mit dem Titel „Chemistry for Future Energy Solutions“ drehen sich weitere Sessions um verschiedene Aspekte rund um Energiespeicherung und -konversion. weiterlesen…

Wie Katalysatoren altern

Chemische Eigenschaften im Inneren in 3-D extrem genau und schneller als bislang messen

Forschende des schweizerischen Paul-Scherrer-Instituts haben eine neues Tomografie-Verfahren entwickelt, mit dem sie chemische Eigenschaften im Inneren von Katalysator-Materialien in 3-D extrem genau und schneller als bislang messen können. Die Anwendung ist gleichermaßen für Forschung und Industrie wichtig. Ihre Ergebnisse veröffentlichten die Forschenden am in Science Advances (Foto: Paul-Scherrer-Institut 2016 – © PSI – psi.ch, CC BY-SA 4.0, commons.wikimedia.org). weiterlesen…

Geothermie-Potenziale für CO2-Reduktion

Neue Fallstudie über nachhaltige Energiequelle

Erdwärme kann als nachhaltige Energiequelle auch in Deutschland einen signifikanten Beitrag zur Senkung von CO2-Emissionen leisten. Das zeigt eine Fallstudie zum Geothermie-Kraftwerk Kirchstockach unter dem Titel „Environmental performance of a geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin“ (Umweltverträglichkeit eines geothermischen Kraftwerks zur Nutzung einer hydrothermalen Ressource im süddeutschen Molassebecken), die Wissenschaftler am Zentrum für Energietechnik (ZET) der Universität Bayreuth in Renewable Energy veröffentlicht haben. weiterlesen…

„Energieforschung strategischer Schlüssel auf Weg zu Klimaneutralität“

Kabinett verabschiedet Bundesbericht Energieforschung 2021

Das Bundeskabinett hat laut einer gemeinsamen Medienmitteilung der Ministerien für Wirtschaft, Forschung und Landwirtschaft am 05.05.2021 den Bundesbericht Energieforschung 2021 beschlossen. Der Bericht gibt einen ausführlichen Überblick über die Förderpolitik der Bundesregierung zur Energieforschung und stellt die Fortschritte des 7. Energieforschungsprogramms vor. Das 7. Energieforschungsprogramm wird unter Federführung des BMWi mit Beteiligung des BMBF und des BMEL umgesetzt. Der Bericht stellt außerdem die Förderung durch die Länder und die EU Forschungspolitik im Energiebereich dar. weiterlesen…

Plasmabeschleunigung: Die Mischung macht’s

Eine Prise Stickstoff und künstliche Intelligenz bringen Laser-Plasmabeschleunigung großen Schritt näher Richtung Anwendung

Gleich zwei Meilensteine in der Entwicklung innovativer Plasmabeschleuniger konnte das LUX-Team bei DESY jetzt feiern, so eine Medienmitteilung vom 27.04.2021: Die Forschenden von Universität Hamburg und DESY erprobten an ihrem Beschleuniger eine Technik, in der die Energieverteilung der erzeugten Elektronenstrahlen besonders klein gehalten werden kann. Zudem brachten sie den Beschleuniger mit Hilfe künstlicher Intelligenz dazu, seinen Betrieb selbst zu optimieren (Bild: Plasmabeschleunigung – © DESY/SciComLab). weiterlesen…

Mit aktivem maschinellem Lernen zu neuen Solarzellen

Maschine bestimmt selbst, welche Daten sie braucht

Wissenschaftler der Abteilung Theorie des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft und der Technischen Universität München nutzen maschinelles Lernen bei der Suche nach geeigneten molekularen Materialien. Um mit der endlosen Vielfalt möglicher Materialien zurechtzukommen, bestimmt die Maschine selbst, welche Daten sie braucht. Eine Medienmitteilung aus beiden Institutionen (Grafik: Algorithmus für selbständiges Lernen – Darstellung des bereits gelernten chemischen Raums – © Christian Kunkel, FHI). weiterlesen…

Silizium-Solarzellen mit mehr als 26 Prozent Wirkungsgrad

Durchsichtige Nanoschichten im neuen Zelldesign für mehr Solarstrom

Günstiger als mit Sonne lässt sich heute Strom nicht erzeugen. An sonnigen Standorten entstehen derzeit Kraftwerke, die Solarstrom sogar für weniger als 2 ct/kWh liefern werden. Marktgängige Solarzellen auf der Basis von kristallinem Silizium machen dies mit Wirkungsgraden bis 23 Prozent möglich und halten daher einen Weltmarktanteil von etwa 95 %. Mit noch höheren Wirkungsgraden (jenseits der 26 %) könnten die Kosten weiter sinken. Dieses Ziel hat nun eine Arbeitsgruppe vom Forschungszentrum Jülich mit einem nanostrukturierten, durchsichtigen Material für die Vorderseite von Solarzellen und einem ausgeklügelten Design im Blick. Über ihren Erfolg vieljähriger Forschung berichten die Wissenschaftlerinnen und Wissenschaftler in Nature Energy. (Bild: Vier TPC-Solarzellen in Laborgröße (je 4 cm2) – ©Forschungszentrum Jülich) weiterlesen…